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SUMMARY

Human CST (CTC1-STN1-TEN1) is an RPA-like
complex that is needed for efficient replication
through the telomere duplex and genome-wide repli-
cation restart after fork stalling. Here, we show that
STN1/CST has a second function in telomere replica-
tion during G-overhang maturation. Analysis of over-
hang structure after STN1 depletion revealed normal
kinetics for telomerase-mediated extension in S
phase but a delay in subsequent overhang short-
ening. This delay resulted from a defect in C-strand
fill-in. Short telomeres exhibited the fill-in defect but
normal telomere duplex replication, indicating that
STN1/CST functions independently in these pro-
cesses. Our work also indicates that the requirement
for STN1/CST in telomere duplex replication corre-
lates with increasing telomere length and replication
stress. Our results provide direct evidence that
STN1/CST participates in C-strand fill-in. They also
demonstrate that STN1/CST participates in two
mechanistically separate steps during telomere
replication and identify CST as a replication factor
that solves diverse replication-associated problems.

INTRODUCTION

Mammalian telomeres consist of kilobase pairs of T2AG3/C3TA2

repeats bound by a six-protein complex called shelterin (Palm

and de Lange, 2008). The DNA ends in a 30 G-strand overhang

of 30–110 nt that serves as the substrate for telomerase (Chai

et al., 2006; Zhao et al., 2008, 2009). Telomeres pose a unique

challenge to the replication machinery due to their repetitive

nature and unusual terminal structure (Gilson and Géli, 2007;

Stewart et al., 2012a). The duplex region is replicated by the

conventional replication machinery; however, a number of addi-

tional proteins are needed for efficient passage of the replication

fork (Sfeir et al., 2009; Vannier et al., 2012). In humans, telomere

replication occurs throughout S phase, and telomerase exten-

sion of the G strand is tightly linked to duplex replication (Zhao

et al., 2009). The daughter telomere generated by leading strand
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synthesis is processed almost immediately to generate the

overhang needed for telomerase action (Chow et al., 2012). An

overhang is naturally present on the telomere replicated by

lagging strand synthesis. After G-strand extension by telome-

rase, the complementary C strand is filled in by DNA polymerase

a primase (pol a). Although telomerase extends the overhang

soon after duplex replication, C-strand fill-in occurs some hours

later. The process involves several rounds of primer synthesis re-

sulting in gradual overhang shortening over an additional 3–4 hr

(Zhao et al., 2009). It is currently unclear how pol a is recruited or

regulated during the fill-in reaction given the likely absence of

a replisome. Here, we identify mammalian CST (CTC1-STN1-

TEN1) as a key player in C-strand fill-in.

CTC1 andSTN1were originally identified as a pol a stimulatory

factor (AAF) that increases pol a processivity and affinity for

ssDNA templates (Casteel et al., 2009; Goulian et al., 1990).

Recently, CST was found to be important for telomere mainte-

nance with depletion leading to longer G overhangs and telo-

mere loss or disruption (Chen et al., 2012; Miyake et al., 2009;

Stewart et al., 2012b; Surovtseva et al., 2009; Wu et al., 2012).

Mammalian CST resembles the Cdc13-Stn1-Ten1complex that

is responsible for telomere protection in budding yeast (ScCST)

in that the STN1 and TEN1 subunits are conserved, both

complexes resemble RPA, and both bind ssDNA (Chen et al.,

2012; Miyake et al., 2009; Price et al., 2010). However, in

mammalian cells, shelterin rather than CST is primarily respon-

sible for telomere protection. CST instead plays a role in replica-

tion both at the telomere and elsewhere in the genome. CST is

not a conventional replication factor because it does not coloc-

alize with replication foci (Miyake et al., 2009), and it appears to

function in duplex DNA replication only during replication stress

(Stewart et al., 2012b). At the telomere, it facilitates replication of

the telomere duplex, most likely by rescuing replication after fork

stalling. Elsewhere in the genome, CST is involved in the restart

of DNA synthesis via new origin firing.

In budding yeast, ScCST controls G-strand extension through

positive and negative regulation of telomerase (Giraud-Panis

et al., 2010). Because Cdc13 and Stn1 both interact with pol

a (Chandra et al., 2001; Puglisi et al., 2008; Qi and Zakian,

2000; Sun et al., 2011), ScCST is also proposed to recruit pol

a for complementary C-strand synthesis. However, this role

remains to be demonstrated directly. Given that mammalian

CTC1-STN1 (AAF) and XenopusCST both stimulate pol a activity
hors
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Figure 1. STN1 Depletion Delays G-Over-

hang Shortening

(A) Western blots showing STN1 knockdown and

expression of sh-resistant FLAG-STN1. Asterisk (*)

indicates cross-reacting band.

(B–G) Effect of STN1 depletion on overhang signal

analyzed by in-gel hybridization. (B) Quantification

of overhang signal from asynchronous cultures.

shSTN1-Res, shSTN1-resistant. (C–G) Overhang

signal from synchronous cultures after release into

S phase. (C and E) Representative gels showing

overhang signal in HeLa 1.2.11 clones (C) or HeLa

ST pools (E). DNA was hybridized with (TA2C3)4
probe before and after denaturation. (D and F)

FACS data showing DNA content of cells from (C)

and (E). (G) Quantification of overhang signal from

HeLa 1.2.11 or HeLa ST cells (mean ± SEM, n = 3

experiments; p values are shown).

Related to Figures S1 and S2.
(Goulian et al., 1990; Nakaoka et al., 2012), mammalian CST

seemed a likely candidate to direct telomeric C-strand fill-in.

To address this possibility, we examined the cell-cycle regula-

tion of G-overhang structure. We now present direct evidence

that CST participates in C-strand synthesis. We first demon-

strate that depletion of STN1 causes a defect in C-strand fill-in

during late S/G2 phase. We then show that this defect is sepa-

rable from the effect of STN1 depletion on telomere duplex

replication. Our results indicate that CST functions in two distinct
Cell Reports 2, 1096–1103, No
aspects of telomere replication: passage

of the replication fork through the telo-

meric duplex, and C-strand fill-in syn-

thesis after telomerase action.

RESULTS

Effect of STN1 Depletion on G
Overhang and Telomere Length
We and others previously found that

depletion of CTC1 or STN1 in HeLa cells

results in a modest but consistent

increase in G-overhang size but has little

effect on telomere length (Miyake et al.,

2009; Price et al., 2010; Stewart et al.,

2012b; Surovtseva et al., 2009). To further

investigate the role of STN1 in G-over-

hang- and telomere-length regulation,

we depleted STN1 in cell lines with

different telomere lengths and/or telome-

rase levels. These included HCT116 (3–6

kb telomeres), HeLa 1.2.11 (10–20 kb

telomeres), HeLa (3–5 kb telomeres),

and HeLa ST that overexpress telome-

rase (25–45 kb telomeres; Cristofari and

Lingner, 2006) (Figures 1A and S1A).

For experiments with HeLa, HeLa ST,

and HCT116, we used pools of cells

expressing shRNA to STN1 (shSTN1) or
a nontarget control (shNT). Experiments with HeLa 1.2.11 were

performed with previously characterized single-cell clones

(shSTN1-7, shSTN1-6, or shNT) and a cell line where STN1

expression was rescued with a FLAG-tagged sh-resistant

STN1 allele (shSTN1-7 Res) (Stewart et al., 2012b). STN1

mRNA depletion was 75%–82% for HeLa, HeLa 1.2.11, and

HeLa ST and �65% for the HCT116 pool.

G-overhang status was examined by in-gel hybridization of

probe to the overhang under nondenaturing conditions.
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Figure 2. The Delay in G-Overhang Shorting

Occurs at Both Leading and Lagging

Daughters

(A) Top view is a cartoon showing BrdU incorpo-

ration into daughter telomeres generated by

leading versus lagging strand replication. Bottom

view is an experiment showing separation of newly

replicated daughters. Telomeric DNA in fractions

was detected by slot blot.

(B) Overhang signal from leading and lagging

daughters isolated after release into S phase.

In-gel hybridization with (TA2C3)4 probe.

(C) FACS data showing DNA content of cells

from (B).

(D) Quantification of data mean ± SEM (n = 3

experiments; p values are shown). Normalization

was to shNT leading strand telomeres at 6 hr.
Quantification revealed that STN1 knockdown caused a 1.5- to

2-fold increase in overhang signal in each cell type (Figures 1B,

S1B, and S1C). This increase was largely rescued by expression

of sh-resistant STN1. To determine whether the increase in

overhang signal reflected a change in telomerase activity, we

performed TRAP assays on extracts from HeLa ST and HeLa

1.2.11 cells. These revealed no significant difference in activity

(Figures S1D and S1E). STN1 depletion also had little effect on

telomere length (Figures S1F–S1I). The telomeres from shSTN1

HeLa 1.2.11, HeLa, and HCT116 cells remained essentially the

same length after 40–60 population doubling (PD). As expected,

the HeLa ST cells underwent gradual telomere elongation, but

the rate of telomere growth was unaffected by STN1 depletion.

Thus, our results confirmed previous observations by Miyake

et al. (2009) (but see also Chen et al., 2012) and indicate that

STN1 is unlikely to be a significant determinant of telomere

length in HeLa or HCT116 cells. Overall, our findings indicate

that the increase in G overhang after STN1 depletion is unlikely

to be caused by an elevation in telomerase activity, and it occurs

without net telomere elongation.

STN1 Promotes G-Overhang Shortening in Late S/G2
During S phase, telomerase-expressing cells exhibit a transient

increase in overhang length due to the time lag between G-

strand extension by telomerase and C-strand fill-in by pol

a (Zhao et al., 2009). To address the role of CST in overhang

length regulation, we asked if this transient change in overhang

length was affected by STN1 depletion. HeLa 1.2.11 or HeLa
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ST cultures were blocked at G1/S,

released into S phase, and harvested at

3 hr intervals. Relative overhang signal

was then analyzed by in-gel hybridization

(Figures 1C–1G). The control shNT cells

exhibited the expected transient increase

in overhang length during early-to-mid S

phase as the signal peaked at �6 hr after

release and then gradually declined

during late S/G2 phase (Zhao et al.,

2009). Interestingly, in STN1-depleted

cells, the increase in overhang length fol-
lowed similar dynamics. However, the decline in length during

late S/G2 showed a consistent delay. Although this delay was

modest in the HeLa 1.2.11 cells, it was statistically significant

in the HeLa ST cultures. In these cultures, the overhang signal

from the shNT cells decreased �26% between 6 and 9 hr post-

release, whereas in the shSTN1 cells, the signal decreased by

only 5%–6%. In both HeLa strains, the overhangs of shNT cells

were restored to their original average length by G1 of the next

cell cycle (12 hr after release). However, the overhangs of

shSTN1 cells remained longer and then became further elon-

gated during the following S phase. The delay in overhang short-

ening after STN1 depletion did not appear to result from

a decrease in overall growth rate because FACS analysis indi-

cated that passage through the cell cycle was unaffected

(Figures 1D and 1F).

The delay in overhang shortening in STN1-depleted HeLa

1.2.11 was confirmed by direct analysis of overhang size after

the overhangs were released from the telomere duplex by degra-

dation of the duplex DNA with DSN (duplex-specific nuclease)

(Extended Results; Figures S2A and 2B). We also showed that

the overhangs return to their original length if the G1 of the

next cell cycle is prolonged (Extended Results; Figures S2D–

S2G). The latter finding demonstrates that overhang processing

can occur in G1. It may also explain why in HeLa cells, STN1

depletion does not cause progressive overhang elongation

with increased PD. Overall, our results show that STN1 depletion

delays overhang shortening in late S/G2 but has no effect on the

timing or extent of overhang elongation in early-to-mid S phase.



Figure 3. STN1 Promotes C-Strand Fill-In

(A) Strategy to monitor C-strand fill-in at lagging daughter telomeres.

(B–D) Analysis of overhang density. HeLa 1.2.11 clones were labeled with BrdU for the indicated times after release into S phase. Overhangs were released from

lagging daughters with DSN and analyzed in CsCl gradients. (B) Detection of overhangs in gradient fractions by slot blot with probe to the overhang. (C)

Quantification of overhang signals from shNT or shSTN1-7 clones plotted versus density (representative experiment). Data are from blots shown in (B). (D) is the

same as for (C) but with shSTN1 cells rescued with sh-resistant STN1.

Related to Figure S3.
These findings indicate that STN1 is unlikely to limit G-strand

extension by telomerase or C-strand resection by nuclease

because these are early events in telomere replication (Chow

et al., 2012; Zhao et al., 2009). Instead, our results point to

a role for STN1 in the overhang shortening that occurs as cells

exit S phase.

Leading and Lagging Daughters Are Both Affected
by STN1 Depletion
Replication of telomeric DNA by leading and lagging strand

synthesis generates dissimilar termini on the two daughters

that are later subjected to different DNA-processing events

(Chow et al., 2012). To examine whether the delay in overhang

shortening occurs at both daughters, we used BrdU labeling

and CsCl density gradient centrifugation to isolate newly repli-

cated leading and lagging daughter telomeres prior to overhang

analysis (Chai et al., 2006). The telomeric G strand is always

synthesized as the leading strand, whereas the C strand is

synthesized as the lagging strand (Figure 2A). Thus, leading

daughters incorporate twice as much BrdU (UUAGGG) and

band at a higher density in CsCl as compared to lagging daugh-

ters (CCCUAA).

HeLa 1.2.11 shNT and shSTN1 cells were blocked at G1/S,

released into BrdU, and collected 6, 9, and 12 hr later. DNA

was restriction digested and subjected to density gradient

centrifugation. Fractions containing the leading and lagging

daughters were identified by slot blot (Figures 2A and S2C),

and the residual DNA in those fractions was subject to overhang

analysis (Figures 2B). In agreement with previous results, the

overhangs on the leading daughters of the control shNT cells

were generally shorter than those of the lagging daughters at

the 6 hr time point (Figure 2D) (Zhao et al., 2009), which is after

telomerase extension but prior to C-strand fill-in (see below).
Cell Re
The overhangs on both daughters then became shorter as the

cells progressed into late S/G2 phase, and by the following G1

phase, they were of comparable size. Although the overall

decrease in overhang length for the purified shNT daughter

telomeres was similar to that observed when the entire telomere

population was analyzed (Figure 1G), the difference between the

6 and 9 hr time points was more striking. This is probably

because signal from contaminating unreplicated and partially

replicated telomeres had been removed (Figure S2C). In contrast

to the control samples, the overhangs from shSTN1 cells

showed little decrease in length until the 12 hr time point. This

delay in overhang shortening was clearly visible on both daugh-

ters. We therefore conclude that the event(s) involving STN1 that

is responsible for overhang shortening must be common to both

leading and lagging daughters.

STN1 Depletion Causes a Delay in C-Strand Fill-In
The delay in overhang shortening could be explained if STN1 is

needed for C-strand fill-in following G-strand extension by telo-

merase. To test for such a role, we monitored overhang matura-

tion on lagging daughters by examining overhang density

following growth in BrdU (Zhao et al., 2009). The change in

density can be detected by CsCl density gradient centrifugation

of overhangs that have been released from the telomeric duplex

by DSN digestion (Zhao et al., 2008). During telomere duplex

replication, the parental G strand does not incorporate BrdU,

so the overhangs remain unlabeled and of low density until

they are extended by telomerase (Figures 2A and 3A). After telo-

merase incorporates BrdU, the lagging overhangs consist of

�50% unlabeled DNA and �50% BrdU-labeled, telomerase-

synthesized DNA and are of intermediate density. After C-strand

fill-in, the remaining overhangs are fully BrdU labeled and are of

high density (Figure 3A).
ports 2, 1096–1103, November 29, 2012 ª2012 The Authors 1099



Figure 4. STN1 Participates in Telomere Duplex Replication and C-Strand Fill-In

(A) Telomere FISH on HeLa with short telomeres. Arrows indicate occasional MTSs.

(B) Quantification of MTSs (mean ± SEM, n = 3 experiments; p values are shown).

(C) Experimental timeline. HeLa or HeLa 1.2.11 cells were released into S phase then incubated with BrdU or EdU for consecutive 1.5 hr intervals.

(D and E) Amounts of telomere replication throughout S phase. Graphs from representative experiments show percentage of leading daughters that completed

replication relative to total telomere signal for each time period in HeLa 1.2.11 clones (D) or HeLa pools (E).

(F) Detection of delayed C strand fill-in in HeLa with short telomeres. Overhangs were detected by slot blot; signals were quantified and plotted versus density

(representative experiment).

Related to Figure S4.
HeLa 1.2.11 cells were blocked at G1/S, released into BrdU

for 6, 9, or 12 hr, DNA isolated, and the newly replicated

leading and lagging daughters separated in CsCl gradients.

Fractions containing the lagging daughters were pooled, and

the duplex DNA was digested with DSN. The released over-

hangs were then subjected to a second round of density

gradient centrifugation. Overhang-containing fractions were

identified by slot blot, and fraction density was determined

from the refractive index (Figures 3B and 3C). When we

compared the overhangs isolated from shNT and shSTN1 cells

6 hr after release into S phase, we found them to be of the

same intermediate density (Figure 3C). This result again indi-

cated that STN1 depletion had no effect on G-strand extension

by telomerase (see Extended Experimental Procedures for

further discussion). By 9 hr after release, the G overhangs in

shNT cells were converted to a higher density due to C strand

fill-in (Zhao et al., 2009), and they became fully BrdU

substituted by 12 hr postrelease. In contrast, the overhangs

of shSTN1 cells remained at an intermediate density at 9 hr

and showed only a slight density increase by 12 hr. This lack

of density shift at 9 hr was largely rescued by expression of

sh-resistant STN1 (Figure 3D). Taken together, these data indi-

cate that shSTN1 cells experience a delay in C-strand fill-in

during late S/G2 phase and suggest that STN1 may participate

in the fill-in process.
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The Role of STN1 in C-Strand Fill-In Is Independent
of Its Role in Telomere Duplex Replication
We previously showed that STN1 depletion in HeLa 1.2.11 cells

slows replication through the duplex region of the telomere by

�1.5 hr (Stewart et al., 2012b), most likely due to the role of

CST in replication restart after fork stalling. Although this delay

in duplex replication could partially explain the delay in C-strand

fill-in observed 9 hr after release of shSTN1 cells into S phase, it

is unlikely to cause the delayed fill-in at 12 hr. Nonetheless,

we sought to separate the effect of STN1 depletion on duplex

replication from the effect on C-strand fill-in by examining fill-in

in cells where the rate of duplex replication was unaffected by

STN1 knockdown.

FISHanalysiswithHeLa1.2.11previously revealed an increase

inmultiple telomere signals (MTSs) on individual chromatids after

STN1 or CTC1depletion (Price et al., 2010; Stewart et al., 2012b).

These MTSs appeared to reflect difficulty in replicating the long

(10–20 kb) telomere duplex. When we performed telomere

FISH using HeLa cells with short 3–5 kb telomeres, we observed

fewerMTSs (Figures 4A and 4B), suggesting that STN1 depletion

might have less effect on telomere duplex replication in cells with

shorter telomeric tracts. To test this possibility, we compared the

rates of telomere duplex replication in the two HeLa strains.

Cells were blocked in G1/S, released into S phase,

and samples were pulse labeled with either BrdU or EdU for
hors



consecutive 1.5 hr intervals (Figure 4C). To quantify the amount

of telomeric DNA replicated during each 1.5 interval, DNA from

the BrdU-labeled cells was isolated, and newly replicated

leading and lagging daughters were separated from unreplicated

daughters in CsCl gradients. The leading strand peak was used

to quantify the fraction of telomeres completing replication

during any time interval (Figure S3D) because this peak contains

fully replicated telomeres and minimal contamination with repli-

cation intermediates (Figure 2A) (Chow et al., 2012). To examine

the rate of bulk genomic DNA replication during each time

period, we quantified the amount of EdU uptake by FACS

(Figures S3A–S3C).

When we compared the amount of newly replicated telomere

in HeLa 1.2.11 versus HeLa with short telomeres, we found that

the two HeLa strains responded differently to STN1 depletion.

As expected, in HeLa 1.2.11, replication through the telomere

was slower in the shSTN1 cells despite the rate of bulk

genomic DNA replication remaining essentially unchanged

(Figures 4D and S3C; Stewart et al., 2012b). The shNT and

shSTN1 cells appeared to initiate telomere replication at

a similar rate, but replication then proceeded faster in the

shNT cells. This resulted in an �1.5 hr difference in the time

taken for shNT and shSTN1 cells to complete replication of

all of their telomeres. The HeLa with short telomeres entered

S phase somewhat less synchronously after the G1/S block,

but like HeLa 1.2.11, the shNT and shSTN1 cells underwent

bulk genomic DNA replication at the same rate and initiated

telomere replication at the same time (Figures 4E and S4C).

However, in contrast to HeLa 1.2.11, telomere replication in

the HeLa shNT and shSTN1 cells peaked and declined at

similar time points (Figures 4E and S4D). These results imply

that STN1 depletion affects telomere duplex replication in

a manner dependent on telomere length.

Because STN1 depletion did not significantly affect the rate

of telomere duplex replication in HeLa with short telomeres,

we examined whether these cells still exhibited a delay in C-

strand fill-in. As before, we monitored fill-in by using CsCl

density gradients to determine overhang density on newly

replicated lagging strand telomeres. Comparison of overhang

density revealed that, as observed for the HeLa 1.2.11 cells,

most of the overhangs from the shNT and shSTN1 HeLa

with short telomeres were of intermediate density 6 hr after

release (Figure 4F), indicating that telomerase extension was

complete (Zhao et al., 2009). Moreover, whereas the density

of the overhangs from the shNT cells had shifted to higher

density by 9 hr postrelease, the overhangs from the shSTN1

cells remained at the intermediate density, again indicating

a delay in C-strand fill-in. These results demonstrate that

STN1 depletion causes a defect in C-strand fill-in even

when telomere duplex replication has proceeded at a normal

rate. We therefore conclude that human STN1/CST is needed

for C-strand synthesis after extension of the lagging strand

telomere by telomerase. Although it is not possible to use

overhang density to monitor C-strand fill-in on telomeres repli-

cated by leading strand synthesis, the delay in overhang

shortening observed by in-gel hybridization implies that CST

is also needed for C-strand synthesis at the leading strand

telomere.
Cell Re
DISCUSSION

It has long been recognized that telomeres must utilize a unique

mechanism to recruit and regulate pol a because the repli-

somewill not bepresent todirectC-strandfill-in following telome-

rase action. In some ciliates, the problem is solved through

formation of a ‘‘telomere synthesis’’ complex that contains both

telomerase and pol a (Ray et al., 2002). However, such a complex

has not been observed in mammals, and the mechanism of pol

a regulation at telomeres has remained obscure. Our results

provide insight into this long-standing problemby demonstrating

that STN1/CST is needed for the C-strand fill-in reaction. Our

finding is particularly interesting given that STN1/CST was

recently shown to participate in telomere duplex replication

(Gu et al., 2012; Stewart et al., 2012b). We show here that the

effect of STN1 depletion on C-strand fill-in is separable from

the effect on telomere duplex replication because the fill-in defect

occurs in cells with short telomeres where duplex replication is

unaffected. Thus, STN1/CST participates in two independent

steps in telomere replication that each requires a specialized

approach to resolve challenges to the replication machinery.

Our results also provide information aboutG overhangmatura-

tion. First, we demonstrate that overhang processing is not

restricted to S/G2 but can continue during the subsequent G1

phase. Second, we provide direct evidence that STN1/CST is

needed for C-strand fill-in at telomeres replicated by leading as

well as lagging strand synthesis despite the two daughter telo-

meres being subject to quite different processing reactions

during initial overhang generation (Chai et al., 2006; Chow

et al., 2012). While this manuscript was in revision, another study

showed that STN1 depletion causes overhang elongation at both

leading and lagging daughters and that overhang shortening in

late S/G2 is delayed (Huang et al., 2012). However, this study

did not directly address the underlying cause of overhang elon-

gation or the delay in shortening. Additional work will be needed

to determine the precise role of CST in directing C-strand fill-in

but given that CST/AAF can modulate pol a processivity and

affinity for ssDNA templates in vitro (Goulian et al., 1990;Nakaoka

et al., 2012). CST is likely to also function in this context in vivo.

CST interacts with the shelterin subunitsmost closely associated

with the 30 overhang (TPP1 in humans and Pot1b in mice; Chen

et al., 2012; Wu et al., 2012). These interactions are likely to

deliver CST to the G strand after telomerase action leaving CST

ideally positioned to recruit and/or regulate pol a. To date, we

have not detected a stable interaction between CST and pol

a (unpublished data; see also Nakaoka et al., 2012), so interac-

tions with pol a may be transient or cell-cycle regulated.

During telomere duplex replication, CST probably helps restart

replication after fork stalling (Stewart et al., 2012b). This role is

also likely to involve the ability of CST to modulate pol a activity.

CST might recruit pol a to help restart stalled forks where the re-

plisome has become damaged and lost the polymerase. Alterna-

tively, CST might facilitate firing of dormant replication origins

that lie within the telomere downstream of the stall site (Droso-

poulos et al., 2012). The latter scenario fits with our finding that

CST promotes genome-wide origin firing during recovery from

HU-induced fork stalling (Stewart et al., 2012b). Either scenario

fits with our finding that STN1/CST is more important for efficient
ports 2, 1096–1103, November 29, 2012 ª2012 The Authors 1101



telomere duplex replication when telomeres are very long

because one would expect the frequency of replication fork stall-

ing to increase with telomere length.

Overall, our findings indicate that CST is a replication factor

that is used to solve a variety of replication problems where

the replisome is absent or may be damaged. Interestingly, muta-

tions in CTC1 cause Coats plus, a severe disorder with pleio-

tropic clinical symptoms (Armanios, 2012). The wider range of

symptoms observed in Coats plus as compared with the short

telomere syndromes caused by mutations in telomerase or shel-

terin subunits may reflect the fundamental role of CST in

resolving diverse replication-related problems.

EXPERIMENTAL PROCEDURES

Quantification of G Overhang Amount by Nondenaturing In-Gel

Hybridization

Purified DNAs were restriction digested then briefly run on 1% agarose gels

so the telomeres remained in a tight band. Gels were dried and hybridized

with 32P-labeled (TA2C3)4 probe to the G overhang. Gels were then denatured,

rehybridized with the same probe, and the signal was used to normalize for gel

loading.

Separation of Leading and Lagging Daughters, Analysis of Overhang

Density, and Replication Rates

HeLa cells were released into S phase after a double-thymidine block and

pulse labeled with BrdU (100 mM) or EdU (50 mM) as indicated. Genomic

DNA was isolated by high-salt precipitation (see Extended Experimental

Procedures). Leading and lagging strand daughter telomeres were separated

as described by Chai et al. (2006). For overhang density analysis, fractions

containing lagging daughters were pooled, digested with DSN (duplex-

specific nuclease; Evrogen, Russia) at 37�C for 2 hr, mixed with CsCl, and

centrifuged for 20 hr at 60,000 rpm in a VTI80 rotor (Beckman). Following frac-

tionation, the telomeric overhang was detected by slot blot with high-specific

activity T3C3(TA2C3)3 probe (Zhao et al., 2008). The rates of bulk genomic and

telomeric DNA replication were determined by quantifying EdU uptake or the

fraction of leading daughters completing replication within a specific time

period (see Extended Experimental Procedures) (Stewart et al., 2012b).
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