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The regulation of DNA double-strand breaks (DSBs) and telomeres are diametrically
opposed in the cell. DSBs are considered one of the most deleterious forms of DNA
damage and must be quickly recognized and repaired. Telomeres, on the other hand,
are specialized, stable DNA ends that must be protected from recognition as DSBs to
inhibit unwanted chromosome fusions. Decisions to join DNA ends, or not, are therefore
critical to genome stability. Yet, the processing of telomeres and DSBs share many
commonalities. Accordingly, key decision points are used to shift DNA ends toward DSB
repair vs. end protection. Additionally, DSBs can be repaired by two major pathways,
namely homologous recombination (HR) and non-homologous end joining (NHEJ). The
choice of which repair pathway is employed is also dictated by a series of decision
points that shift the break toward HR or NHEJ. In this review, we will focus on these
decision points and the mechanisms that dictate end protection vs. DSB repair and
DSB repair choice.
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INTRODUCTION

DNA double strand breaks (DSBs) originate from exposure to both external DNA damaging agents,
such as genotoxic chemicals and ionizing radiation (IR), and endogenous sources, such replication
fork collapse, reactive oxygen species and chromosome fusions (Symington and Gautier, 2011;
Ceccaldi et al., 2016). DSBs can be beneficial or detrimental depending on the context. On the
one hand, programmed DSBs can be beneficial to promote genome and antibody diversity in
meiosis and V(D)J recombination, respectively. However, DSBs caused by DNA damage are almost
always detrimental and result in deletions, translocations, and chromosome fusions, which leads to
senescence, apoptosis or oncogenesis (Phillips and McKinnon, 2007; Bohgaki et al., 2010; Bunting
and Nussenzweig, 2013; Rulten and Caldecott, 2013; Ghosh et al., 2018; Seol et al., 2018). To prevent
such outcomes, cells activate a DNA damage response (DDR), which is predominantly mediated
by the phosphatidylinositol 3-kinase-related kinase (PIKK) family members, DNA-dependent
protein kinase (DNA-PK), ataxia-telangiectasia mutated (ATM), and ATM and RAD3-related
(ATR) (Blackford and Jackson, 2017). These kinases signal to downstream cell cycle checkpoints
and localize repair machinery to the break (Blackford and Jackson, 2017). DSBs are repaired by
two major pathways, namely homologous recombination (HR) and non-homologous end joining
(NHEJ) (Figure 1).
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FIGURE 1 | Overview of DSB repair pathways. Left, homologous recombination (HR) involves resection of the DNA ends by various nucleases. The ssDNA
generated is then bound by RPA. Next, there is an exchange of RPA for RAD51, which facilitates the homology search and repair of the DSB. Center, for
non-homologous end joining (NHEJ), the DNA ends are bound by Ku70/80 heterodimers promoting the binding of DNA-PKcs. This creates a binding platform for
XRCC4, XLF, and LIG4, which facilitate ligation of the DNA ends. Right, DSBs can also be repaired by alternative-end joining (alt-EJ) or single strand annealing (SSA)
pathways. These involve the use of short homologous sequences that are exposed by resection of the break. Following alignment, the DNA flaps are removed and
the DNA ligated. Alt-EJ uses around 2 to 20 base pairs (bp) of homology and SSA > 25 bp to align sequences.

Homologous recombination is highly accurate and typically
occurs in S/G2 phases of the cell cycle when a replicated sister
chromatid is present (Burma et al., 2006; Sullivan and Bernstein,
2018). To initiate HR, the DNA ends are resected to generate
long 3′ single-stranded (ss)DNA overhangs, which pair with
homologous sequences. These templates are then used for DNA
synthesis and repair of the break (Symington and Gautier, 2011).
This process is mostly error-free, can repair protein-blocked ends
and is facilitated by RAD51, a recombinase with ATPase activity
which initiates strand invasion and DNA synthesis (Mehta and
Haber, 2014). NHEJ, on the other hand, is fast, selective for two-
ended DSBs, and often mutagenic (Ranjha et al., 2018; Stinson
et al., 2020). Although NHEJ is active in all phases of the cell cycle,
it occurs most frequently in G1 phase and repairs about 80% of
IR-induced DSBs, making it the predominant repair pathway in
mammalian cells (Burma et al., 2006; Beucher et al., 2009). To
initiate NHEJ, the Ku70/80 heterodimer (hereafter referred to as
Ku) and the DNA-PK catalytic subunit (DNA-PKcs) are recruited
to damage sites to generate the DNA-PK holoenzyme (Gell and
Jackson, 1999; Singleton et al., 1999; Jette and Lees-Miller, 2015).
DNA-PK bridges the DNA ends creating a long-range synapse
(Graham et al., 2016; Chen et al., 2021). Additional proteins
X-Ray Repair Cross Complementing 4 (XRCC4), XRCC4-like
factor (XLF) and DNA ligase 4 (LIG4) are recruited to align

and ligate the DNA ends (Blackford and Jackson, 2017). To
complicate matters, DSBs can also be repaired by alternative-end
joining (alt-EJ; also known as DNA polymerase θ-mediated end
joining) and single-strand annealing (SSA) pathways (Figure 1;
McVey and Lee, 2008; Frit et al., 2014; Iliakis et al., 2015; Sallmyr
and Tomkinson, 2018; Seol et al., 2018). Both pathways require
some resection and utilize short regions of homology to pair the
DNA ends together (Seol et al., 2018).

While DSBs must be quickly recognized and repaired to
preserve genome stability, the natural chromosome ends, known
as telomeres, must be protected from the DDR to prevent genome
instability in the form of chromosome fusions and degradation.
Telomeric DNA ranges in length from a few hundred base pairs
in yeast to tens of kilobases in mammals (Blackburn, 1991;
Greider, 1991). In humans, telomeres consist of short tandem
5′-TTAGGG-3′ repeats on the G-rich strand and complimentary
5′-CCCTAA-3′ repeats on the C-rich strand (Figure 2A). The
G-rich strand also contains a 3′ ssDNA region referred to as
the G-overhang (Makarov et al., 1997; McElligott and Wellinger,
1997). In mammals, telomeres are protected by the shelterin
complex, comprised of telomere repeat-binding factors 1 and 2
(TRF1 and TRF2), repressor activator protein 1 (RAP1), TRF1-
interacting nuclear factor 2 (TIN2), telomere protection protein
1 (TPP1) and protection of telomeres 1 (POT1) (Figure 2B;
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de Lange, 2018). Shelterin components have been identified in
most eukaryotes, however, the number of known components
can vary or shelterin subunits may be missing entirely, such as
in Saccharomyces cerevisiae (de Lange, 2001, 2005). The duplex
DNA is bound by TRF1 and TRF2/RAP1 whereas the G-overhang
region is protected by POT1, which complexes with TPP1.
Unlike humans, which contain a single POT1 gene, mice have
two separate POT1 genes, POT1a and POT1b. These genes are
proposed to have arisen from a duplication event (Hockemeyer
et al., 2006). While clearly orthologous, POT1a and POT1b
have evolved to provide slightly different activities in telomere
protection (Hockemeyer et al., 2006; Wu et al., 2006; Palm et al.,
2009; Kibe et al., 2010). POT1a has been shown to repress the
DDR while POT1b controls 5′-end resection (Hockemeyer et al.,
2006; Wu et al., 2006; Kibe et al., 2010). TPP1 interacts with
TIN2 to bridge the double-stranded and single-stranded bound
portions of shelterin. As described in more detail below, shelterin
plays a critical role in telomere end protection and preventing the
recognition of telomeres as DNA damage.

During S-phase, telomeres are replicated in three distinct
steps (Figure 2C; Stewart et al., 2012). First, the duplex DNA
is replicated by the conventional replication machinery. While
replication on the leading strand is presumed to reach the
chromosome terminus, the lagging strand machinery is unable
to fully replicate the ends, a phenomenon known as the
end-replication problem (Watson, 1972; Olovnikov, 1973). To
overcome this, telomeres are extended by telomerase, which is
recruited and stimulated by TPP1/POT1. Recent work suggests
that TIN2 also mediates telomerase recruitment and functions
with TPP1/POT1 to stimulate telomerase processivity (Frank
et al., 2015; Pike et al., 2019). Prior to extension, telomeres are
resected to create a binding site for telomerase. After extension,
telomerase is then dissociated from the telomere by CTC1-
STN1-TEN1 (CST), a replication protein A (RPA)-like ssDNA
binding protein, to prevent extensive G-overhang elongation
(Stewart et al., 2018; Lim and Cech, 2021). Both CST and
RPA are heterotrimeric proteins that contain multiple ssDNA
binding folds and recruit proteins to the DNA to perform various
activities (Chen and Wold, 2014; Lim et al., 2020). Work in
yeast also suggest that the Pif1 helicase may function to remove
telomerase (Boule et al., 2005). CST is then proposed to stimulate
DNA polymerase α-primase (pol α) to convert most of the
G-overhang to duplex DNA (Giraud-Panis et al., 2010). The
remaining short G-overhang can form a lariat structure called
a telomere loop (t-loop) (Griffith et al., 1999). This structure is
thought to protect the DNA terminus and restrict further access
by telomerase, as discussed in more detail below. Telomeres
can also be extended by a telomerase-independent mechanism
that relies on recombination, a pathway known as alternative
lengthening of telomeres (ALT) (Cesare and Reddel, 2010).

Together, telomerase and ALT make up the telomere
maintenance pathways, which can coexist in vivo (Perrem
et al., 2001). However, telomerase is the predominant elongation
pathway under normal conditions. In humans, telomerase
expression is typically restricted to germline and stem cells with
most somatic cells having a finite number of cellular divisions.
Once telomeres become critically short, cells lose the ability

FIGURE 2 | Overview of telomeres. (A) Telomeres consist of a repetitive DNA
sequence that forms a duplex DNA region and a 3′ G-rich ssDNA overhang
(C-strand, red: G-strand, blue). (B) Telomeres are bound by the shelterin
complex (TRF1-TRF2-RAP1-TIN2-TPP1-POT1) and the CST complex
(CTC1-STN1-TEN1), which aid in telomere maintenance. (C) Steps in
telomere replication. First, the telomere duplex is replicated resulting in either a
blunt end (leading strand replication) or an overhang (lagging strand
replication). The leading strand end is then processed to generate a
G-overhang. Telomerase then extends the G-overhangs followed by C-strand
fill-in to convert most of the ssDNA to duplex DNA, leaving a short
G-overhang.

to divide, a state known as replicative senescence (Munoz-
Espin and Serrano, 2014). Telomere shortening is associated
with normal aging, and premature shortening is associated
with a number of premature aging-related diseases (Armanios
and Blackburn, 2012). A hallmark of cancer is replicative
immortality; thus, pre-cancerous cells must maintain telomere
length to prevent senescence (Hanahan and Weinberg, 2011).
More specifically, 85 to 90% of human tumors re-express or
upregulate telomerase while 10 to 15% maintain telomeres
through ALT (Shay and Wright, 2019).

DSBs and telomeres resemble each other in many ways. Both
are terminal DNA ends with a ssDNA overhang or blunt end.
When such substrates arise in cells, decisions on whether or
not to repair the DNA must be made. These decisions are often
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critical to maintaining genome stability with incorrect decisions
potentially leading to cell death or chromosome instability.
Accordingly, each decision point is highly regulated to ensure the
proper repair pathway is engaged, or, in the case of chromosome
ends, prevented. Many of these decision points are reversible,
allowing a way back should the incorrect decision be made,
or downstream factors are not available. However, the initial
pathway choice often dictates the mechanism of repair. In this
review, we will focus on these decision points and how they are
regulated in mammals. Since HR-mediated DSB repair requires
the most processing, it will be used as the focal point on which
to frame decisions that direct pathway choice, including the
mechanisms that shift repair toward HR vs. NHEJ and those
protecting telomeres from “repair.”

MECHANISMS REGULATING DSB
REPAIR AND END PROTECTION

Based on current understanding, there are at least four key
decision points required for HR-mediated DSB repair (Figure 3).
First, the DNA ends are recognized and bound by the MRE11-
RAD50-NBS1 (MRN) complex to initiate DNA repair and recruit
the repair machinery. Second, the break is subjected to short-
range resection by MRN. Third, long-range resection occurs to
generate an overhang that is bound by RPA. Finally, RPA is
replaced by RAD51, which formally initiates the homology search
and HR-mediated repair. At each of these decision points, it is
crucial to recognize whether the DNA end is a bona fide DSB vs.
a chromosome terminus as well as whether a homologous sister
chromatid is present. This will dictate how the DNA ends are
processed and what factors are recruited. Below, we will broadly
discuss each of these decision points and the factors regulating
the choice to join or not join the DNA ends. For more detailed
assessments of individual decisions points, we refer readers to
several recent reviews (de Lange, 2018; Pannunzio et al., 2018;
Wright et al., 2018; Krenning et al., 2019; Wu, 2019; Blackford
and Stucki, 2020; Ensminger and Lobrich, 2020; Vitor et al., 2020;
Yue et al., 2020; Panigrahi and Glover, 2021).

DSB Recognition
In response to DSBs, the lesion must first be recognized by
DNA damage sensors. Ku binding is traditionally associated with
repair by NHEJ whereas MRN is associated with HR-mediated
repair. While still not completely understood, recent work, in
both yeast and mammals, suggest that the recruitment and
binding of these sensors is context dependent and not mutually
exclusive (Langerak et al., 2011; Ingram et al., 2019; Chen et al.,
2021). Instead, it is the subsequent steps that determine the
displacement of these factors to promote HR, NHEJ or end
protection. Recent biochemical and single molecule studies even
suggest that Ku binding may be required for MRN-dependent
resection (Deshpande et al., 2020). Much of this groundbreaking
work has been performed in the model organism S. cerevisiae
and then subsequently verified in mammals and other organisms.
A major distinction between budding yeast and mammals is that
NBS1 is not conserved in yeast. Instead, the S. cerevisiae complex

FIGURE 3 | Key decision points in the repair of DSBs by HR. (1) The DNA
ends are bound by either MRN or the Ku70/80 heterodimer. Binding and
retention of MRN will shift repair toward HR and the binding of Ku shifts repair
toward to NHEJ. (2) Short range resection by MRN. (3) Long-range resection
of the DNA and RPA binding. (4) RPA is exchanged for RAD51, which
facilitates strand invasion, DNA synthesis and HR repair.

is composed of Mre11, Rad50 and Xrs2 (MRX) with Xrs2 being
the functional homolog of NBS1 (Rupnik et al., 2010; Tisi et al.,
2020). For simplicity, we will use the designation MRN unless
referring to studies exclusively performed in S. cerevisiae.

HR
MRN is one of the first responders to a DSB and, thus, it is
key to instigating downstream steps in the repair process (Lisby
et al., 2004). While recognition of the break by MRN is still
under investigation, in vitro single molecule studies suggest that
MRN uses facilitated 1D diffusion to search along nucleosome-
bound DNA for DSBs (Myler et al., 2017). MRN can function
at both unblocked and blocked DNA ends to promote resection
of the DSB (Figure 4). At blocked ends, MRN can remove
Ku as well as other protein-DNA adducts to access the break.
MRN also promotes the recruitment and stimulation of ATM
at the DSB, which in turn promotes H2AX phosphorylation on
S139 (γH2AX) (Carney et al., 1998; Lee and Paull, 2004, 2005).
Mediator of DNA damage checkpoint 1 (MDC1) is then recruited
by γH2AX around the break and acts as a bridge between ATM
and γH2AX to create a positive feedback loop (Burma et al.,
2001; Kolas et al., 2007). Further expansion of γH2AX leads
to the recruitment of additional downstream repair factors, the
initiation of cell cycle arrest and resection of the DNA (Stewart
et al., 2003; Stucki et al., 2005; Lou et al., 2006).

NHEJ
Like MRN, Ku is a first responder at DSBs and provides a docking
site for DNA-PKcs (Yaneva et al., 1997). Unlike MRN, which
can bind internally, Ku requires a free DNA end for binding
and cannot associate with most blocked ends (Blier et al., 1993;
Myler et al., 2017). Accordingly, when NHEJ is the preferred
pathway, such as in G1, blocked ends must be freed to allow
Ku binding (Mirman and de Lange, 2020). How these blocks
are removed is still under investigation, but several nucleases,
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FIGURE 4 | How DSB ends are processed under different conditions.
Scissors indicate MRN endonuclease activity. MRN binding to unblocked
ends leads to resection of the DNA. When Ku binds in the absence of MRN,
no resection occurs. However, when both Ku and MRN are bound, stimulation
of the MRN nuclease activity promotes resection and the removal of Ku. MRN
can similarly function at ends blocked by a protein adduct, damaged bases or
DNA secondary structures.

including tyrosyl-DNA phosphodiesterase 1 and 2 (TDP1/2) and
Artemis, can remove hairpins, damaged bases or protein-DNA
adducts (Menon and Povirk, 2016; Pannunzio et al., 2018; Meek,
2020). DNA blocks can also be removed through the stimulation
of Artemis by DNA-PKcs (Gerodimos et al., 2017). Interestingly,
in the event of a nucleosome blocked end, an in vitro study
found that Ku can displace histone H1 from the DNA, however,
it does not displace the nucleosome (Roberts and Ramsden,
2007). This could expose DNA ends to allow Ku binding, but
more work is needed to uncover other possible roles of Ku in
unblocking these DNA ends.

Whether Ku remains bound at the break appears to be
one of the most critical steps in preventing resection and
shifting repair outcomes toward NHEJ vs. HR. For Ku removal,
several pathways can be employed to promote HR or, in
the case of telomeres, end protection. These include the
dissociation of Ku through short-range resection (discussed
in more detail below), phosphorylation of Ku by DNA-PKcs,
ubiquitination of Ku by RNF8 or RNF138 and blockage of
DNA-PKcs autophosphorylation (Feng and Chen, 2012; Ismail
et al., 2015; Lee et al., 2016). Autophosphorylation of DNA-
PKcs is promoted through its interaction with the TIP60
histone acetyltransferase, which stimulate the activity of DNA-
PKcs and recruitment of the ligation machinery (Ding et al.,
2003). To block pro-NHEJ activity during S-phase, breast cancer
gene 1 (BRCA1) directly blocks DNA-PKcs autophosphorylation
(Davis et al., 2014). SUMOylation of TIP60 has also been
proposed to inhibition autophosphorylation and facilitate a
switch toward HR (Gao et al., 2020). Additionally, when
homologous sequences are available during S and G2 phases,
DNA-PKcs autophosphorylation favors the binding of MRN and
other HR factors (Ding et al., 2003; Zhou and Paull, 2013;
Symington, 2016). MRN can stimulate resection in the presence
of Ku and DNA-PKcs through the recruitment of exonuclease 1

FIGURE 5 | TRF2 facilitates telomere loop (t-loop) formation by promoting
invasion of the G-overhang into the duplex region to form a displacement loop
(D-loop). This t-loop combined with shelterin blocks MRN and Ku from
accessing the chromosome ends and initiating DSB repair.

(EXO1) (Zhou and Paull, 2013). This allows the recruitment of
EXO1 to DNA ends to promote HR rather than NHEJ, through
mechanisms that are still poorly understood.

Telomeres
Although both Ku and MRN have been positively implicated
in telomere maintenance (Wang et al., 2009; Lamarche et al.,
2010), the exclusion of Ku and MRN from telomeres is one
mechanism used to prevent the misrepair of chromosome ends.
Mounting evidence indicates that t-loops serve a major role in
blocking Ku and MRN access to chromosome ends (Figure 5).
Recent analysis using super-resolution microscopy have helped
define the mechanism of t-loop formation (Doksani et al., 2013;
de Lange, 2018; Van Ly et al., 2018). This process is mediated
by TRF2 and involves invasion by the G-overhang into duplex
DNA to create a large lariat structure (Griffith et al., 1999;
Doksani et al., 2013). While t-loops prevent initial recognition
of telomeres as DSBs, these elegant structures must also be
protected from the HR machinery. At the base of the t-loop,
the DNA is presumed to form a Holliday junction (HJ)-like
structure that can be cleaved by HJ resolvases, leading to telomere
loss. Again, TRF2 is involved in preventing t-loop cleavage
through inhibition of the Werner syndrome (WRN) helicase
(Nora et al., 2010). This prevents WRN strand displacement of
HJs with telomeric repeats (Nora et al., 2010). RAP1 has also
been implicated in t-loop protection although some of the reports
are conflicting (Bae and Baumann, 2007; Cesare et al., 2008;
Benarroch-Popivker et al., 2016).

TRF2 deletion in mice results in removal of the 3′-ssDNA
overhang by MRE11 and the loss of t-loops, promoting the
“repair” of dysfunctional telomeres and chromosomal fusions
(Attwooll et al., 2009; Deng et al., 2009; Cesare et al., 2013).
When TRF2 is absent, ATM is phosphorylated in an MRN-
dependent manner. However, the nuclease activity of MRE11 is
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dispensable, suggesting that MRN association alone is sufficient
to recruit ATM to telomeres. Additionally, upon inhibition of
TRF2, excision repair cross-complementation group 1 (ERCC1)
and ERCC4 (also known as XPF) target the telomeric overhang
for degradation (Zhu et al., 2003). This indicates a previously
unexpected role of ERCC1/ERCC4 in the “repair” of unprotected
telomeres through NHEJ. Interestingly, during G2, unprotected
telomeres lacking a G-overhang are bound by Ku, which leads
to chromosome fusions, although the DDR and formation of
end-to-end fusions is functionally distinct from NHEJ (Zhu
et al., 2003). In this case, RNF8 promotes the accumulation of
ubiquitinated H2A, which in turn, recruits p53-binding protein 1
(53BP1), ATM and REV7 to promote DNA ligase IV-dependent
NHEJ (Smogorzewska et al., 2002; Peuscher and Jacobs, 2011;
Boersma et al., 2015).

Short-Range Resection
Once a DSB is recognized by MRN, resection can be initiated
to promote HR. This occurs in a two-step process with short-
range resection by MRN followed by long-range resection to
allow RPA-binding (Shibata et al., 2014). Once resection initiates,
HR is enabled. This was previously seen as a point of no return.
However, recent studies suggest that this decision point may
be more flexible than initially imagined. Furthermore, resection
is an essential step in telomere elongation so, under these
conditions, resection needs to be achieved without engaging HR.
In this section, the mechanisms regulating short-range resection
will be discussed.

HR
Biochemical and single-molecule studies have significantly
contributed to our understating of both short- and long-
range resection in recent years. Combined with the many
genetic studies performed in both yeast and mammals, the
following model of short-range resection has emerged (Figure 6).
First, MRE11 forms a nick in the dsDNA 20 to 40 nt from
the break (Anand et al., 2016). Interaction between CtBP
interacting protein (CtIP) (Sae2 in budding yeast) and MRN
is essential for short-range resection (Huertas et al., 2008;
Huertas and Jackson, 2009). MRE11 is a 3′-to-5′ exonuclease with
weak endonuclease activity. Since resection creates a 3′-ssDNA
overhang, it remained unclear for many years how resection
was achieved through MRN. However, CtIP was discovered to
stimulate the endonuclease activity of MRE11, allowing it to nick
the dsDNA and create a template for MRN endonuclease activity
(Anand et al., 2016). CtIP localization to DSBs is regulated by
cyclin dependent kinase (CDK), BRCA1 and ATM (Yu and Chen,
2004; Yun and Hiom, 2009; Wang et al., 2013). In addition to
regulating CtIP, CDKs also regulates other key factors involved
in resection, checkpoint activation and downstream steps in the
recombination process, making CDKs a vital player in pathway
choice (Ferretti et al., 2013; Zhao et al., 2017). Since CDKs are cell
cycle regulated, this helps prevent HR outside of S and G2 phase,
which can have disastrous consequences.

Stimulation of MRE11 nuclease activity may also be regulated
by cell cycle and apoptosis regulator protein 2 (CCAR2) (Lopez-
Saavedra et al., 2016). Work by López-Saavedra et al. suggests that

FIGURE 6 | Model of short-range resection. Short-range resection by MRN is
stimulated by CtIP. Localization of CtIP to the chromatin is dependent on
phosphorylation of CtIP by CDK and ATM and ubiquitination by BRCA1. CDK
has also been proposed to phosphorylate MRX in budding yeast in a cell
cycle-dependent manner, suggesting that CDK may regulate MRN in
mammals. Phosphorylation of H2AX by ATM also promotes short-range
resection and the recruitment of DSB machinery. Upon localization with MRN,
CtIP stimulates both MRN endonuclease (indicated by the scissors) and
3′-to-5′ exonuclease activity to facilitate short-range resection. (P:
phosphorylation; Ub: ubiquitination).

MRN and CtIP are found in an inactive complex with CCAR2
and, upon DNA damage, phosphorylation of CtIP disrupts the
CCAR2-CtIP-MRN complex to promote MRN nuclease activity.
A complex of BRCA1 and BRCA1-associated RING domain-1
(BARD1) as well as exonuclease 3′-5′ domain-containing protein
2 (EXD2) also stimulate MRN-dependent nuclease activity and
resection (Wang et al., 2007; Coleman and Greenberg, 2011;
Broderick et al., 2016; Nieminuszczy et al., 2016). Recently, the
lysine specific histone demethylase, PHF2 (KDM7C/JHDM1E),
was shown to regulate CtIP and BRCA1 mRNA levels, suggesting
an additional layer of regulation (Alonso-de Vega et al., 2020).

Once the nick is formed, MRE11 engages its 3′-to-5′
exonuclease activity to resect back toward the break (Shibata
et al., 2014). This activity is also stimulated by CtIP, which
is recruited by NBS1 (Wang et al., 2013; Anand et al., 2019).
Additionally, the RAD50 subunit of MRN moderates MRE11
nuclease activity, indicating that MRN complex formation is
critical to support short-range resection (Cannavo et al., 2019).
The innerworkings of MRE11, RAD50 and NBS1 complex
formation and activity has been well studied and reviewed
extensively elsewhere (Lafrance-Vanasse et al., 2015; Reginato
and Cejka, 2020; Qiu and Huang, 2021). Short-range resection
by MRN is proposed to remove obstacles, such as Ku and
other DNA adducts, freeing the DNA ends for repair by HR,
alt-EJ or SSA (Figure 4; Chanut et al., 2016). In yeast, MRX
works not only on blunt ends but also on chemically modified
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DNA, short overhangs and DNA containing secondary structures
(Cejka, 2015).

NHEJ
Ku binding at DSBs serves as the major mechanism to block
end resection (Rothkamm et al., 2003; Zhou and Paull, 2013;
Ceccaldi et al., 2016; Graham et al., 2016; Mladenov et al.,
2019). Accordingly, the decision to proceed toward NHEJ
requires the prevention of MRN-dependent resection so that
Ku remains bound. This can be achieved in several different
ways. First, ATM limits resection by phosphorylating Ubiquilin
4 (UBQLN4), a proteasomal shuttle factor, which leads to
MRE11 degradation (Jachimowicz et al., 2019). Thus, ATM plays
seemingly contradictory roles in short-range resection. On the
one hand, it promotes MRN-CtIP-BRCA1 recruitment to DSBs,
while on the other, it promotes MRE11 degradation. Future
work is needed to fully understand the role of ATM in DSB
repair, but context (e.g., cell cycle stage, location of the break,
etc.) and the localization of other factors likely contribute to the
use of ATM in NHEJ vs. HR. Another proposed mechanism
to inhibit Ku removal is preventing MRN localization to the
break site. While such a mechanism has not been directly
demonstrated, cell cycle dependent phosphorylation of MRE11
by CDK1 was observed in S. cerevisiae and could serve to
prevent MRE11 localization to DSBs (Simoneau et al., 2014).
Once bound, MRN requires CtIP and other pro-resection
factors to stimulate MRE11 nuclease activities. Thus, regulation
of these factors can prevent resection and Ku removal. One
strategy used to limit MRN nuclease activity is keeping CtIP
levels low in G1 (Yu and Baer, 2000). Additionally, CtIP
localization to DSBs is regulated by CDKs (CDK1 in yeast
and CDK2 in mammals), as mentioned above. CDK-dependent
phosphorylation of CtIP precipitates BRCA1 ubiquitination and
CtIP localization to DSBs (Figure 6; Yun and Hiom, 2009;
Wang et al., 2013). These modifications are mainly restricted
to S/G2, limiting CtIP interaction with MRN. Interestingly, a
recent report also found that long-term ATR kinase inhibition
or conditional topoisomerase II binding protein 1 (TopBP1)
degradation affects E2F-dependent transcription of BRCA1,
CtIP and Bloom syndrome protein (BLM) (Dibitetto et al.,
2020). Loss of these pro-resection factors results in impaired
end resection and a shift toward toxic NHEJ, suggesting that
translational regulation of pro-resection factors could also serve
to regulate resection.

While NHEJ relies on the suppression of end resection
for repair, in situations where NHEJ is impaired, alt-EJ and
SSA works to join DSBs in a resection-dependent and Ku-
independent manner (Figure 1; Ceccaldi et al., 2016). Generally,
in these pathways, the DSB is first resected to expose ssDNA
that varies in length depending on the pathway. In both
pathways, MRN and CtIP initiate resection (Bennardo et al.,
2008; Dinkelmann et al., 2009; Xie et al., 2009; Yun and Hiom,
2009; Zhang and Jasin, 2011; Truong et al., 2013; Biehs et al.,
2017). If this initial end resection occurs in G1, it inhibits NHEJ
and drives repair toward alt-EJ or SSA (Xiong et al., 2015; Bakr
et al., 2016). Unlike HR, alt-EJ and SSA can repair DSBs during
G1 of the cell cycle because a homologous sister chromatid is

not required (Xiong et al., 2015; Sallmyr and Tomkinson, 2018).
Alt-EJ is characterized by limited resection and short 2 to 20 nt
regions of complementary sequences, while resection in SSA is
longer and generally requires sequences of > 25 nt (Sallmyr and
Tomkinson, 2018). After resection, the DNA ends are used to
align short homologous sequences for repair. Non-homologous
3′ tails are then removed, gaps filled and the ends are ligated to
complete repair (Figure 1).

Telomeres
During replication and telomere extension, telomeres are
susceptible to recognition as DSBs and degradation. This is
because the t-loop must be resolved to access the chromosome
end (Figure 7). Furthermore, proteins involved in resection,
including CtIP, EXO1 and DNA2, are involved in telomere
duplex replication and could potentially act on chromosome
ends (Lin et al., 2013; Stroik et al., 2019, 2020). On the leading
strand, replication can theoretically proceed to the end of the
chromosome to create a blunt end. This model is supported
by studies in yeast, plants and mammals, where blunt-ends
or very short (1 to 2 nt) overhangs have been identified after
duplex replication (Chow et al., 2012; Valuchova et al., 2017).
On the lagging strand, the RNA primer of the last Okazaki
fragment must be removed, leading to a loss of at least 10
to 12 nt of DNA each replication cycle. However, analysis of
G-overhangs suggests that the final Okazaki fragment actually
initiates 70 to 100 nt from the chromosome terminus (Chow
et al., 2012). Accordingly, the leading strand sister chromatid
resembles a blunt-end or “clean” one-sided break whereas the
lagging strand sister chromatid contains a significant ssDNA
overhang, comparable to a resected DSB.

In telomerase positive cells, the 3′-ssDNA overhang is
extended in a highly controlled process to prevent potentially
catastrophic events that may arise from telomere under- or
over-extension. For extension by telomerase, a ssDNA binding
site is needed to allow telomerase RNA component (TERC)
to base pair, creating a primer for reverse transcription.
While the lagging strand has a ready-made overhang, the
leading strand requires processing. Studies in mice suggest
that Apollo and EXO1 facilitate resection of the telomeric
C-strand (van Overbeek and de Lange, 2006; Lam et al.,
2010; Wu et al., 2010, 2012; Chow et al., 2012). In yeast,
Dna2 has also been implicated in end processing, although
it has been difficult to separate its role in duplex replication
vs. end resection (Tomita et al., 2004; Budd and Campbell,
2013; Markiewicz-Potoczny et al., 2018). Currently, how Apollo,
EXO1 and/or DNA2 are recruited for telomere end resection
and whether the ends are immediately bound and protected
by shelterin, following duplex replication, remains unclear.
However, Apollo recruitment requires interaction with TRF2
and is subsequently blocked by POT1b (van Overbeek and de
Lange, 2006; Wu et al., 2012). Therefore, shelterin, or at least
shelterin subunits, are likely to bind immediately after passage
of the replication fork, which could prevent recognition of
the ends as DSBs.

T-loops are thought to serve as a major deterrent to HR
and NHEJ. How t-loops are resolved to allow replication
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FIGURE 7 | Model of telomere replication and end protection. During telomere replication, t-loops are resolved exposing chromosome ends to potential repair
mechanisms. On the lagging strand, regions of ssDNA are bound by RPA as part of the normal replication process. To prevent stable RPA binding, an RPA-to-POT1
switch is facilitated by hnRNPA1. TERRA then removes hnRNPA1 to allow POT1 binding. On the leading strand, blunt telomere ends are resected by DNA2, EXO1
and/or Apollo to generate a G-overhang. (RPA may also bind to these ends and require removal). Telomerase is localized to the telomeres through its interaction with
TPP1 to extend the G-overhang. To prevent G-overhang hyperextension, CST is localized to telomeres by TPP1 and inhibits telomerase activity. Additionally, CST
promotes C-strand fill-in by stimulating pol α. After telomere processing, t-loops are reformed to protect the chromosome end from DSB repair.

remains largely unknown but recent work by the Boulton
group identified key steps in the assembly and disassembly
process (Sarek et al., 2019). Outside of S-phase, t-loop formation
is maintained by phosphorylation of TRF2 by CDK. During
S-phase, TRF2 is transiently dephosphorylated by protein
phosphatase 6 regulator subunit 3 (PP6R3), allowing t-loop
disassembly and the completion of DNA replication. This t-loop
disassembly appears to be very transient and another study
suggests that t-loops may be present during S-phase (Timashev
and De Lange, 2020). Thus, defining how this switch is regulated,

and specifically how the DDR is inhibited during this period,
warrants further investigation.

Long-Range Resection
Short-range resection leads to additional processing to generate a
long ssDNA overhang that becomes a substrate for RPA binding
and the promotion of HR. The switch from short- to long-
range resection, like other steps, is highly regulated and often
described as a point of no return. However, as described in more
detail below, mechanisms do exist to shift repair back to NHEJ,
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making this decision point reversible under certain conditions.
Nevertheless, long-range resection and RPA binding are one of
the most critical points in the pathway to joining DNA ends
through HR vs. NHEJ. Moreover, telomeric G-overhangs must
be protected from RPA binding and unwanted HR.

HR
The goal of long-range resection is to create a stretch of
ssDNA long enough for significant RPA binding. RPA is then
exchanged for RAD51, which facilitates the homology search.
Critical to the initiation of long-range resection is the binding
of BRCA1 and blockage of 53BP1 (Daley and Sung, 2014).
Generation of the 3′-overhang by MRN likely leads to initial
RPA binding and ATR recruitment. One model suggests an ATM
to ATR switch in which ATM initiates resection and triggers
ATR activation to regulate later steps in HR (Cuadrado et al.,
2006; Shiotani and Zou, 2009). It is proposed that ATR drives
HR by facilitating the stabilization of BRCA1 through TopBP1.
This counteracts 53BP1 recruitment (Liu et al., 2017). BRCA1
and BARD1 then form a complex, which stabilizes BRCA1,
to facilitate resection and recruit the partner and localizer of
BRCA2 (PALB2)-BRCA2 complex for RAD51 loading (Joukov
et al., 2006; Sy et al., 2009; Zhang et al., 2009b; Orthwein
et al., 2015). The BRCA1-BARD1 complex also acts as an E3
ubiquitin ligase to prevent 53BP1 localization at DSBs during
S phase (Chapman et al., 2012; Kakarougkas et al., 2013).
While BRCA1 is not intrinsically required for resection, it is
critical to overcome the 53BP1-mediated block and activation
of DSB processing by facilitating CtIP phosphorylation (Cao
et al., 2009; Bunting et al., 2010, 2012; Peterson et al., 2013;
Nacson et al., 2018).

Long-range resection is primarily executed by two distinct
pathways (Figure 8A; Nimonkar et al., 2011). The first involves
EXO1, a 5′-to-3′ exonuclease (Tomimatsu et al., 2012; Myler
et al., 2016). In this pathway, EXO1 enters at the 5′ site and
generates an overhang several kilobases in length. In vitro
biochemical assays have determined that EXO1 alone can
perform end resection, although the process is slow (Soniat
et al., 2019). Based on genetic and in vitro studies, MRN and
the BLM helicase (Sgs1 in budding yeast) are proposed to
recruit EXO1 and stimulate end resection (Mohaghegh et al.,
2001; Nimonkar et al., 2011; Soniat et al., 2019). A second
mechanism involves the joint effort of DNA2 and BLM. DNA2 is
a structure-specific endonuclease that also possesses weak ATP-
dependent helicase activity (Zheng et al., 2020). Since DNA2
does not possess exonuclease activity, the DNA is displaced
into a flap structure for cleavage. Owing to the weak helicase
activity of DNA2, current thinking, backed, by in vitro single-
molecule studies, posits that BLM is required to create a 5′-DNA
flap for cleavage (Mimitou and Symington, 2008; Nimonkar
et al., 2011). Why two separate pathways exist is still unclear.
However, recent biochemical reconstitution studies suggest that
each may be tailored to deal with specific obstacles at or
nearby the break site, such as ribonucleotides and DNA damage
(Daley et al., 2020).

CtIP and RPA have also been implicated as key stimulators of
end resection. CDK phosphorylation of CtIP Thr847 is needed

for effective ssDNA generation and RPA recruitment during
long-range resection (Huertas and Jackson, 2009). In vitro, RPA
stimulates BLM helicase activity at the nick created by MRN.
However, phosphorylation of RPA70 inhibits DNA resection
mediated by the BLM/EXO1 and BLM/DNA2 in vitro (Soniat
et al., 2019; Qin et al., 2020). The dual roles of RPA in long range
resection may explain how resection of the DNA is prevented
while still promoting enough resection for HR.

NHEJ
To prevent long-range resection and promote NHEJ, genetic
studies suggest that 53BP1 must outcompete BRCA1 for binding
to MRN-generated overhangs (Setiaputra and Durocher, 2019).
53BP1 is localized to DSBs through its interaction with specific
histone marks, including di-methylated histone H4 lysine 20 and
ubiquitinated histone H2A lysine 15 (Figure 8B; Sanders et al.,
2004; Botuyan et al., 2006; Kim et al., 2006; Yang et al., 2008; Hsiao
and Mizzen, 2013). Upon localization to the DSB, 53BP1 works
with various factors to prevent or reverse DSB resection. Pax2
transactivation domain interaction protein (PTIP) and Rap1-
interacting protein 1 (RIF1) are two main factors downstream
of 53BP1 which impair end resection at DSBs (Sfeir and de
Lange, 2012; Zimmermann et al., 2013). PTIP acts by blocking
DNA2 activity and interacts with the endonuclease Artemis
to promote NHEJ (Wang et al., 2014; Callen et al., 2020).
On the other hand, Rif1 limits the accumulation of BRCA1-
BARD1 at DNA damage sites, preventing CtIP recruitment
(Zimmermann et al., 2013).

The shieldin complex (SHLD1 [RINN3], SHLD2
[RINN2/FAM35A], SHLD3 [RINN1] and REV7
[MAD2L2/MAD2B]) also prevents and/or reverses end
resection (Figure 8B; Setiaputra and Durocher, 2019). Shieldin
was only recently discovered so many questions remain about
how it functions in DSB repair. However, based on several
mechanistic studies, a model has emerged in which shieldin
both limits end resection and promotes the conversion of
MRN-generated ssDNA back to duplex DNA. SHLD2 contains
three predicted OB-folds that are proposed to bind to MRN-
generated ssDNA overhangs, thus preventing long-range
resection and RPA loading (Callen et al., 2020). To reverse
end resection, shieldin recruits pol α and its stimulatory
factor, CST (Mirman et al., 2018). CST/pol α then convert
the ssDNA back to duplex DNA (Mirman et al., 2018;
Noordermeer et al., 2018). How shieldin and CST/pol α are
recruited to DSBs and under what circumstances is still not
well understood. Nevertheless, recent studies suggest that
TRIP13 and p31comet promote HR by inactivating REV7, which
could provide another reversal point back to HR (Clairmont
et al., 2020; Sarangi et al., 2020). Another open question is
whether 53BP1-shieldin-CST-pol α can act at DNA ends that
escape initial 53BP1 binding and have already been resected.
Such a mechanism could prevent the more disastrous effects
of using alt-EJ or SSA rather than NHEJ in G1 (Ceccaldi
et al., 2016). Shieldin can also act independently of 53BP1 to
inhibit DSB resection, although the mechanism is still unclear
(Ghezraoui et al., 2018). Future work on this newly discovered
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FIGURE 8 | Models of long-range resection and how long-range resection is inhibited/reversed. (A) Long-range resection is mediated by EXO1 or BLM/DNA2. The
resulting ssDNA is bound by RPA, which serves as a platform for ATR binding. To inhibit NHEJ, TopBP1 bridges interactions between ATR and the BRCA1-BARD1
complex, blocking 53BP1. (B) 53BP1 is localized to DSBs through its interaction with specific histone marks. 53BP1 then interacts with RIF1, which localizes the
shieldin complex. Shieldin inhibits long-range resection by preventing access to the resected DNA and reverses resection through its interaction with CST-pol α,
which can mediate fill-in of the resected DNA. This promotes repair of the break by NHEJ. (P: phosphorylation; Ub: ubiquitination).

complex will undoubtedly uncover novel insight into this
critical decision point.

Telomeres
Two key factors, POT1 and CST, are critical to prevent the
recognition of telomeres as HR intermediates. In mammals,
POT1 prevents RPA from binding the G-overhang, which
in turn suppresses ATR activation and unwanted HR (Wu
et al., 2006; Kratz and de Lange, 2018). Interestingly, studies
in the protozoa Leishmania amazonensis and Trypanosoma
cruzi, which appear to lack homologs of POT1 or CST, found
that RPA-1 is involved in end protection, suggesting that
under certain situations RPA can adapt telomere protection
capabilities (Pavani et al., 2014, 2018; Fernandes et al.,
2020). Since RPA has a higher binding affinity and is ∼70-
fold more abundant, POT1 cannot outcompete RPA in vitro
(Flynn et al., 2011; Hein et al., 2015). However, in vivo
POT1 is tethered to shelterin through TPP1, giving POT1
a competitive advantage over RPA. Loss of TPP1 or the
disruption of POT1/TPP1 and TIN2/TPP1 interaction results
in telomeric RPA (Hockemeyer et al., 2007; Barrientos et al.,
2008; Gong and de Lange, 2010; Kratz and de Lange, 2018).
Additionally, POT1/TPP1 can protect uncapped telomeres
following extensive resection, caused by the absence of TRF2
(Deng et al., 2009). During replication, however, shelterin

is displaced and RPA binds to telomeres as part of the
normal replication process (Figure 7). RPA must then be
displaced for allow POT1 binding. Yet, POT1/TPP1 is unable
to displace RPA from telomeric DNA in vitro. Instead, an
elegant mechanism was uncovered in which RPA is displaced
by heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1)
(Flynn et al., 2011; Figure 7). This RPA-to-POT1 switch is
regulated in a cell cycle-dependent manner by expression of
telomeric repeat-containing RNA (TERRA), a telomeric non-
coding RNA.

Following replication, telomeres are extended in telomerase-
positive cells. Under homeostatic conditions, telomerase adds
∼10 telomeric hexanucleotide repeats to each chromosome
end and is then dissociated to prevent excessive G-overhang
lengthening (Zhao et al., 2009, 2011). Termination of telomerase
activity is primarily mediated by CST (Chen et al., 2012).
The PIF1 helicase can also remove telomerase, although it is
unclear whether this function is solely used to prevent de novo
telomere addition at DSBs or can also promote telomerase
dissociation from telomeres under certain conditions (Boule
et al., 2005; Zhang et al., 2006; Churikov and Geli, 2017).
Removal of telomerase is critical for end protection, as hyper-
extension of G-overhangs can result in telomeric RPA due to
the exhaustion of available POT1 (Feng et al., 2017, 2018).
While still not completely understood, mammalian CST is
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thought to localize to telomeres through interactions with
TPP1/POT1 (Wan et al., 2009; Chen et al., 2012). TPP1/POT1
also recruits telomerase so a switch likely occurs where telomerase
is replaced by CST. A similar mechanism of overhang processing
has been extensively studied in S. cerevisiae. Since shelterin
is not present in S. cerevisiae, Cdc13 recruits telomerase for
telomere extension and Stn1-Ten1 for C-strand fill-in, in place
of TPP1/POT1 (Tseng et al., 2006; Li et al., 2009; Shen
et al., 2014; Gopalakrishnan et al., 2017). This process is
regulated by a series of post-translational modifications. In
humans, phosphorylation of TPP1 by NIMA related kinase 6
(NEK6) is proposed to facilitate telomerase recruitment but
much of the mechanism remains unknown (Zhang et al., 2013;
Hirai et al., 2016). Furthermore, how CST is recruited to
telomeres, whether its recruitment displaces telomerase from
TPP1 and the role of CST DNA binding activity in this process
remain open questions.

In addition to inhibiting telomerase, CST promotes C-strand
fill-in by stimulating pol α (Stewart et al., 2018). CST regulated
fill-in does not appear to be as critical as its ability to
modulate telomerase inhibition for end protection. Deletion
of human TEN1 resulted in defective C-strand fill-in but
CTC1-STN1 were still able to inhibit telomerase. This led
to only a minor increase in G-overhang elongation and
the absence of RPA binding, suggesting that under these
conditions POT1 levels were sufficient to block RPA (Feng
et al., 2018). Similar results were obtained with knockdown
of CST subunits (Surovtseva et al., 2009; Wang et al., 2012;
Kasbek et al., 2013). Interestingly, analysis of G-overhangs
across the cell cycle in STN1 knockdown cells showed that
elongated G-overhangs were reset to near wild-type levels
upon entry into the next G1 (Wang et al., 2012). The
mechanism behind this reset is unknown but may be due to
low levels of STN1 that promote fill-in of the overhang in
G2 or M phase. It is also possible that backup mechanisms
exist to rescue lingering, elongated G-overhangs and prevent
potential RPA binding.

RPA-to-RAD51 Exchange
Following long-range resection, RPA is exchanged for RAD51 to
promote the homology search for HR repair. The homologous
template is then used to fill-in the missing sequence for error-free
repair of the DSB. The switch to RAD51 is generally thought to be
an irreversible step toward HR over NHEJ. However, there is new
evidence that even at this late stage, mechanisms may be in place
to prevent HR under specific situations. At telomeres, the best
way to prevent HR is preventing RPA binding, but what happens
to G-overhangs that become stably bound by RPA? Below, we
will discuss regulation of the RPA-to-RAD51 switch at DSBs and
telomeres as well as how ALT is used to extend telomeres but
prevent end joining.

HR
After resection, ssDNA is quickly bound by RPA. For HR-
mediated repair, RPA is replaced with RAD51 to form a RAD51-
ssDNA nucleoprotein filament, also known as the presynaptic

complex (Lee et al., 2015; Qi et al., 2015). In vitro single-
molecule studies of RPA and RAD51 exchange indicated that
although RPA binds to ssDNA with a higher affinity than
RAD51, high concentrations of RAD51 can undergo facilitated
exchange following ATP hydrolysis by RAD51 (Ma et al.,
2017). However, in vivo RAD51 mediator proteins facilitate
the binding, elongating, and stabilization of RAD51 onto
ssDNA. BRCA2 is primarily responsible for delivering RAD51
monomers (Wong et al., 1997; Pellegrini et al., 2002; Esashi
et al., 2007; Carreira et al., 2009; Jensen et al., 2010). BRC
repeats in BRCA2 act as a scaffold to bind RAD51, a process
facilitated by BRCA1 and PALB2. PALB2 bridges the interaction
between BRCA1 and BRCA2 and localizes RAD51 to the RPA-
ssDNA, where RAD51 is exchanged for RPA (Scully et al.,
1997; Xia et al., 2006; Sy et al., 2009; Zhang et al., 2009a,b;
Zong et al., 2019). After RAD51 filament formation, RAD51
paralogs aid in stabilization and elongation of the filament
(Thacker, 1999; Suwaki et al., 2011; Sullivan and Bernstein,
2018). While filament formation is essential for HR, the exchange
of RAD51 for RPA can be detrimental at other sites of RPA-
ssDNA in the cell, such as replication forks. To prevent
these untimely exchanges, RPA1-related ssDNA binding protein,
X-linked (RADX) was found to antagonize RAD51-ssDNA
filament formation, inhibiting RPA displacement as well as
promoting the disassembly of existing RAD51 filaments at stalled
replication forks (Zhang et al., 2020). Once formed, RAD51
filaments search for homologous regions in the sister chromatid
to instigate repair, as reviewed in detail elsewhere (Haber, 2018;
Bonilla et al., 2020).

Although most studies have focused on 53BP1 function
prior to DSB resection, recent data in budding yeast raises
the possibility that 53BP1 functions after long-range resection
and RPA binding. The 53BP1 homolog Rad9 was shown
to promote D-loop extension by limiting Sgs1 (BLM in
mammals) and Mph1 (FANCM in mammals) helicase
activity, suggesting a role in HR sub-pathway choice after
DSB end resection (Ferrari et al., 2020). The proposed
model is that after a DSB, Rad9 limits hyper-loading of
RPA, Rad51, and Rad52. This limits Sgs1 and Mph1 from
strand rejection to facilitate long-lived D-loops, thus favoring
repair through sub-pathways that require stable D-loops
such as break induced replication (BIR) or long tract gene
conversion. If strand rejection occurs, then SSA is favored.
This unprecedented role of Rad9 in controlling the fate of
HR contradicts the commonly thought of role of 53BP1 in
DSB repair, where it acts as a pre-resection block to HR in
eukaryotes. Whether 53BP1 functions in the same manner in
humans is still unclear, but it could have paradigm-shifting
implications for 53BP1 activity at later steps in DSB repair,
if true.

Telomeres
In the majority of cancers, telomeres are maintained in
a telomerase-dependent manner, however, 10 to 15% of
human cancers maintain their telomeres through the use
of ALT (Bryan et al., 1997). ALT is a homology-based
mechanism to lengthen telomeres (Dunham et al., 2000;
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Hoang and O’Sullivan, 2020; Recagni et al., 2020; Sommer and
Royle, 2020; Zhang and Zou, 2020). The mechanisms of ALT
are still under investigation, but recent evidence points to ALT
using a BIR-like mechanism, which requires the exchange of
RPA to induce recombination (Dilley et al., 2016). ALT is
characterized by ALT-associated promyelocytic leukemia (PML)
bodies (APBs), which consist of telomeric DNA, PML, and
proteins involved in DNA repair, recombination and replication
(Zhang and Zou, 2020). It is still not fully understood how
APBs are assembled and how they promote ALT. However,
a model has been proposed where BLM is critical for APB
formation and telomeric DNA synthesis (Stavropoulos et al.,
2002; Zhang et al., 2019). Additionally, MRN is localized to
telomeres during S and G2 phases through its interaction
with TRF2 and is required for ALT (Zhu et al., 2000;
Jiang et al., 2005; Zhong et al., 2007). Within the APBs,
the telomere is lengthened through RAD51- or RAD52-
dependent BIR-like pathways. In both cases, a homology
search is utilized to initiate BIR. In the RAD51-dependent
pathway, RAD51 and HOP2-MND1 are recruited, and then
RAD51 mediates homology searches and subsequent DNA
polymerization (Cho et al., 2014). In RAD52-dependent BIR,
BLM and DNA2 are proposed to resect the telomere and
then replication factor C (RFC) mediates proliferating cell
nuclear antigen (PCNA) loading (Dilley et al., 2016). PCNA
recruits pol δ through interaction with POLD3 stimulating
pol δ activity and DNA synthesis (Dilley et al., 2016;
Roumelioti et al., 2016). Thus, for ALT, the engagement
of BIR-related factors vs. those required for HR-mediated
repair appears to underlie telomere extension while preventing
chromosome fusions.

As described above, preventing stable binding and localization
of HR factors is the major mechanism used to prevent
unwanted “repair” at telomeres, but what happens when
RPA remains stably bound to G-overhangs? Loss of POT1
or CST results in telomeric RPA foci but surprisingly only
a minor increase in chromosome fusions, particularly in
comparison to TRF2 loss (Denchi and de Lange, 2007; Feng
et al., 2017). Once bound by RPA, telomeres, in essence,
resemble resected RPA-bound DSB intermediates. Even in
the absence of POT1, other shelterin subunits are present
and likely play a role in maintaining end protection. Yet,
how these RPA-bound telomeres remain protected from HR
is not entirely clear. It is likely that the presence of
53BP1 contributes to protection from HR. 53BP1 foci have
been observed at telomeres in both cells lacking POT1
(Hockemeyer et al., 2007; Gong and de Lange, 2010) and
cells expressing a CTC1 G503R mutant construct, which is
unable to localize to telomeres (Chen et al., 2013; Gu and
Chang, 2013; Takai et al., 2016). In both cases, hyper-extended
G-overhangs are generated. Under such conditions, 53BP1 may
continue to block HR, while TRF2 is used to block NHEJ
(Figure 9). In addition, deletion of CTC1 decreases TopBP1
and CHK1 phosphorylation, despite RPA-binding and ATR
activation at telomeres (Ackerson et al., 2020). The loss of
CHK1 signaling and 53BP1 localization could be sufficient to
block the RPA-to-RAD51 exchange and, thus, HR-mediated

FIGURE 9 | Potential mechanism for the protection of RPA-bound telomeres.
Loss of POT1 or CST results in hyperextension of G-overhangs and telomeric
RPA but very few fusions events. We propose that the combination of TRF2
and 53BP1 prevent fusions by blocking NHEJ and HR mediated repair,
respectively.

telomere fusions at RPA-bound telomeres. However, additional
studies are needed to determine the fate of RPA-bound
telomeres. Unraveling such mechanism(s) will undoubtedly
provide novel insights into chromosome end protection and
HR-mediated repair.

CONCLUSION

While our understanding of DSB recognition and repair has
progressed by leaps and bounds in recent years, important
questions remain unanswered. Two key topics that still
need to be fully elucidated are the context and timing
of the key decision points described in this review. To
date, much of our current understanding has centered on
how specific factors interact with each other. To grasp the
larger picture, we must now understand the temporal and
contextual organization of these processes. This includes
addressing how and when t-loops are formed, when shelterin
disassembly/reassembly occurs and elucidating the mechanisms
that protect exposed ends. Furthermore, understanding DSB
pathway choice will require addressing questions such as
the timing of Ku vs. MRN binding at DSBs, whether MRN
is removed in situations where a homologous sequence
is unavailable and how stimulation of MRN nuclease
activities are temporally regulated. Such advances will
pave the way for a more mechanistic understanding of
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these complex processes. Finally, both dysfunctional DSB repair
and telomeres are linked to cancer and aging-related diseases.
Therefore, defining the decision points that dictate whether to
join or not to join the DNA ends will enlighten how these diseases
arise and uncover vulnerabilities that might be exploited for
therapeutic purposes.
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