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1. ABSTRACT

The human CTC1-STN1-TEN1 (CST) complex 
is a single-stranded DNA binding protein that shares 
homology with RPA and interacts with DNA polymerase 
alpha/primase. CST complexes are conserved from 
yeasts to humans and function in telomere maintenance. 
A common role of CST across species is in the regulation 
of telomere extension by telomerase and C-strand 
fill-in synthesis. However, recent studies also indicate 
that CST promotes telomere duplex replication as well 
the rescue of stalled DNA replication at non-telomeric 
sites. Furthermore, CST dysfunction and mutation is 
associated with several genetic diseases and cancers. 
In this review, we will summarize what is known about 
CST with a particular focus on the emerging roles of 
CST in DNA replication and human disease.

2. INTRODUCTION

DNA replication is a highly complex process 
that must be completed efficiently and with high fidelity 

to prevent mutations, breaks and other damage to our 
genome. However, the replication machinery, known 
as the replisome, must navigate a complex chromatin 
environment of natural and acquired replication fork 
barriers (RFBs) that can slow or stall the replisome. 
These include repetitive sequences, DNA-bound 
proteins, R-loops, heterochromatin and DNA damage 
(1-3). Replication errors are a major cause of DNA 
damage and genome instability (3, 4). To overcome 
RFBs, a variety of specialized replication factors have 
evolved, including the telomere-associated CTC1-
STN1-TEN1 (CST) complex. CST is a single-stranded 
DNA (ssDNA) binding protein that shares homology 
with the Saccharomyces cerevisiae Cdc13-Stn1-
Ten1 complex and replication protein A (RPA) (5, 6). 
A conserved role of CST is in telomere replication and 
maintenance. However, recent studies also highlight 
a role for CST in promoting replication rescue at other 
repetitive genomic loci and the activation of dormant 
replication origins following replication stress (7-11).
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Unlike budding yeast, where origins have 
defined sequence motifs, replication origins in higher 
eukaryotes are not defined by sequence but by 
chromatin context or DNA secondary structures, 
such as G-quadruplexes (G4s) (12-15). However, 
the process of origin licensing and activation is well 
conserved from yeasts to humans (16, 17). In humans, 
the origin recognition complex (ORC) binds to the 
chromatin and recruits CDT1 and CDC6 for loading 
of the MCM2-7 helicase in G1 of the cell cycle. This 
complex, known as the pre-replication complex (pre-
RC), is required for origin licensing. After G1, no other 
origins are licensed to prevent re-replication during 
S-phase. The pre-initiation (pre-IC) complex is then 
formed by recruitment of the remaining factors through 
a series of phosphorylation events by DDK and CDK, 
leading to replication origin firing and DNA synthesis. 
Replication then proceeds in a semi-conservative 
fashion, with continuous synthesis on the leading 
strand and discontinuous synthesis on the lagging 
strand. During the process of replication, replisomes 
often stall due to RFBs (18, 19). To prevent DNA 
damage, cells have evolved various mechanisms to 

rescue replication stalling. These include reactivating 
stalled replisomes, replication bypass or firing of 
nearby dormant replication origins (20). A highly 
abundant RFB is short tandem repeat sequences. 
Many of these repeats have the capacity to form 
DNA secondary structures, increasing the likelihood 
of stalling. One region that is particularly difficult to 
replicate are telomeres.

Telomeres are nucleoprotein complexes 
that serve to cap and protect the ends of linear 
chromosomes from degradation and chromosome 
fusions (21). They consist of short tandem repeats 
(5’-TTAGGG-3’ in humans) that vary from several 
hundred nucleotides in yeast to tens of kilobases in 
mice and humans. Due to the G/C rich nature of the 
telomere, the 3¢ and 5¢ ends are referred to as the 
G- and C-strand, respectively. The G-strand ends in 
a short ssDNA region, referred to as the G-overhang, 
which creates a telomeric-loop (t-loop) by displacing a 
portion of the telomere duplex region (Figure 1) (22, 
23). Telomeres are also capped by a number of protein 
factors, which promote chromosome end protection 

Figure 1. Overview of telomere replication and telomere protection complexes. (A) After duplex replication, G-overhangs are created on the lagging and 
leading strand through RNA primer removal or C-strand resection. The G-overhang is then extended by telomerase, followed by C-strand fill-in synthesis 
by pol alpha. Finally, the t-loop is reformed for telomere protection. (B) Top, telomeres are maintained in humans and many other organisms by both the 
shelterin and CST complexes. CST interacts with shelterin through TPP1. Bottom, the t-loop is bound and stabilized by shelterin.



Functions of the CST complex

1566 © 1996-2018

(Figure 1B). In vertebrates, telomeres are bound 
by the shelterin complex, which consists of double-
stranded DNA (dsDNA) binding proteins, TRF1 and 
TRF2, the ssDNA G-overhang binding complex, POT/
TPP1, TIN2, which bridges the interaction between 
TRF1/2 and TPP1/POT1, and RAP1 (24). Collectively, 
this complex is responsible for maintaining telomeres 
with individual components playing specific roles in 
telomere end-protection and length regulation.

Due to their unusual structure and location 
at chromosome ends, telomere replication requires 
additional steps to prevent telomere shortening and 
loss (Figure 1A). The first step involves replication of 
the telomere duplex by the replisome. Replication of 
this region is particularly challenging because of the 
presence of DNA secondary structures, which include 
G4s and the t-loop (25). To overcome these RFBs, a 
number of additional factors, including CST, are recruited 
to complete telomere replication (26). Defects in this 
process can lead to telomere loss and fragility. Following 
completion of telomere duplex replication, RNA from 
the terminal Okazaki fragment on the lagging strand is 
removed, which leads to telomere shortening (27, 28). 
Additionally, telomere sequence is lost each cell cycle 
through nuclease resection of the C-strand (29-31). Over 
successive cellular divisions, telomeres can become 
critically short, leading to cellular senescence or apoptosis 
(27, 32). To overcome progressive telomere shortening, 
a ribonucleoprotein reverse-transcriptase, known as 
telomerase, extends the telomere end using an internal 

RNA template (33). Following telomere extension, the 
C-strand is partially filled in by DNA polymerase alpha-
primase (pol alpha), which leaves a short G-overhang 
for t-loop formation. Defects in G- or C-strand synthesis 
lead to telomere damage, genome instability and growth 
defects. Thus, it is essential to properly regulate each 
step of telomere replication.

3. THE CST COMPLEX

3.1. Conservation of CST complexes

In S. cerevisiae, no shelterin-like complex 
is present. Instead, telomeres are capped by two 
separate complexes. The telomere duplex is bound 
by a Rap1-Rif1/2 complex and the G-overhang 
by CST (Cdc13-Stn1-Ten1) (5). Until recently, no 
CST-like complexes had been discovered in other 
organisms, and it was thought that POT1/TPP1 
had replaced CST on the G-overhang. However, in 
2007, Martin et al. discovered orthologs of STN1 and 
TEN1 in Schizosaccharimyces pombe, which also 
has a shelterin-like complex (34-37). This led to the 
identification of CST complexes in higher eukaryotes, 
including humans, suggesting that CST and shelterin 
co-exist in many organisms to protect and maintain 
telomeres (Figure 1B) (38-44).

CST complexes consist of a large subunit, 
either CTC1 or Cdc13, and two smaller subunits, 
STN1 and TEN1 (Figure 2). The notable exception 

Figure 2. Comparison of CST complexes and human RPA. OB-folds and winged helix-turn-helix domains are shown to scale based off published crystal 
structures or structure predications (see text for details). Black lines denote interactions sites with other proteins and DNA binding domains (DBD). 
Shaded areas between subunits denote interaction sites between CST subunits.
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is in S. pombe where no CTC1 or Cdc13 subunit has 
been identified (45). STN1 and TEN1 are conserved, 
while CTC1 and Cdc13 do not share sequence 
homology and, at present, the extent of functional 
similarity is unclear. However, both contain multiple 
oligonucleotide-oligosaccharide (OB)-folds, which 
are utilized for ssDNA binding and protein-protein 
interactions. OB-folds are commonly found in other 
telomere and ssDNA binding proteins (46, 47). S. 
cerevisiae Cdc13 contains four OB-folds, three of 
which have been structurally determined (42, 48-50). 
Interestingly, only one is required for ssDNA binding 
(48, 50, 51). The other three are involved in protein-
protein interactions and homodimerization of Cdc13 
(52, 53). No structural data is currently available for 
human CTC1 but structure modeling suggests that 
it contains three to six OB-fold domains (7, 39, 40). 
Structural studies of STN1 and TEN1 demonstrate 
that each contains a bona fide OB-fold with STN1 also 
containing two winged-helix-turn-helix domains (42, 
44, 54).

CST structure is strikingly similar to that of RPA 
(Figure 2) (54, 55). RPA is a highly abundant ssDNA 
binding protein that plays an essential role in DNA 
replication, DNA repair and DNA damage response 
pathways (56-58). RPA1, the largest subunit of RPA, 
contains multiple OB-folds, three of which are utilized 
for DNA binding. Phylogenetic analysis of STN1 and 
RPA2 indicate that they share a common ancestor but 
are in distinct monophyletic groups (38, 59). In fact, the 
structural identity is sufficient that replacement of the 
OB-fold in Rpa2 with the OB-fold in Stn1 can rescue 
rpa2D in S. cerevisiae, leading some to suggest the 
CST is a telomeric version of RPA (60, 61). However, 
several differences also exist between RPA and CST, 
including an additional winged-helix-turn-helix domain 
in STN1 and DNA binding preferences (see below). 
Studies in yeast also found structural differences 
between the OB-fold domains of Cdc13 and Rpa1 (50).

3.2. DNA binding activity

Due to their similar structure and shared 
homology, CST binding has been contextualized 
through our understanding of RPA (56-58). One of the 
unique features of RPA is its ability to dynamically bind 
to ssDNA in a sequence independent manner. This 
dynamic binding is facilitated through the use of multiple 
OB-folds that allow RPA to bind in distinct modes. 
These binding modes are dependent on the number of 
OB-folds engaged and ssDNA length. Two OB-folds in 
RPA1 make up the DNA binding core and are required 
for initial binding to short regions of ssDNA (8-10 nt). 
As length increases, other OB-folds are engaged, 
eventually leading to sub-nanomolar binding of RPA 
on ~30 nt of ssDNA. Like RPA, human CST binds to 
ssDNA in the low to sub-nanomolar range and requires 
multiple OB-folds for DNA binding. Recent work has 

highlighted that CST also dynamically binds to ssDNA 
with a minimal binding site of 16-18 nt and maximal 
binding around 48 nt (7, 62, 63). However, unlike 
RPA, CST has both sequence specific and sequence 
independent binding modes. For example, CST can 
stably bind an 18 nt G-strand telomere sequence 
whereas binding is not observed on random or non-
telomeric sequences until they are 32-36 nt in length. 
The preference for short G-rich sequences is facilitated 
in part by STN1, as mutation of key residues in the 
STN1 OB-fold leads to decreased binding on short 
G-strand sequences (7). Interestingly, this sequence 
specific binding mode is related to the G-rich nature 
of the DNA sequence and not the telomere sequence 
per se (63). In contrast to human CST, S. cerevisiae 
CST shows little to no binding on non-telomeric 
sequences and Cdc13 can bind ssDNA independent 
of Stn1 and Ten1, suggesting evolutionary differences 
between CST complexes (64, 65). Nevertheless, these 
differences may be limited to S. cerevisiae, as Cdc13 
from other budding yeast species bind to both G-rich 
and non-telomeric sequences (66, 67). 

Recent work by Bhattacharjee et al. 
highlighted additional properties of CST binding that 
are likely important for cellular function (62). First, 
CST preferentially binds to ss-dsDNA junctions in a 
sequence independent manner. Second, CST can 
bind and melt G4s in vitro, which is likely important for 
promoting replication restart (see below). Third, they 
were able to show that excess CST levels leads to 
facilitated self-dissociation in vitro. This activity is likely 
related to the facilitated exchange activity of RPA, 
which promotes the recruitment and binding of DNA 
replication/repair factors (68, 69). Collectively, these 
findings indicate that CST possesses a variety of DNA 
binding activities that allows it to function in multiple 
DNA replication/repair processes. 

3.3. Stimulation of DNA polymerase alpha-primase

In a study by Goulian et al. in 1990, mouse 
lymphoblast cells were used to purify pol alpha 
interacting partners. In their study, they identified a 
pol alpha accessory factor (AAF) that stimulated the 
primase and polymerase activities of pol alpha in 
vitro (70, 71). Intriguingly, no follow-up studies were 
performed on AAF until 2009, when Casteel et al. 
published a report in which they cloned and sequenced 
AAF and found that it shared homology with RPA (59). 
Shortly after publication of this study, the first reports on 
mammalian CST were published and it was discovered 
that AAF encoded CTC1 (AAF132) and STN1 (AAF44) 
(39, 40). These initial studies provided the first 
evidence that CST interacts with pol alpha and may 
be involved in DNA replication. Since the discovery of 
AAF, CST complexes in various organisms have also 
been shown to interact both genetically and physically 
with pol alpha (5, 72). Pol alpha plays an important role 
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in DNA replication as well as DNA repair and activating 
the DNA damage response through continued primer 
synthesis (73). Understanding the mechanism by 
which CST interacts with and stimulate pol alpha 
continues to be an important area of research, with 
recent studies suggesting that CST stimulates both pol 
alpha primase activity and the primase to polymerase 
switch (43, 74, 75). 

4. IMPORTANCE FOR CELL SURVIVAL

Across different species, depletion or removal 
of CST has been shown to effect cell growth, often 
leading to checkpoint activation and cell cycle arrest 
(37, 40, 41, 76-80). CTC1 deletion in mice and humans 
leads to defects in telomere replication, a global DNA 
damage response, G2/M arrest and premature cellular 
senescence (81, 82) (Ackerson & Stewart, unpublished 
result). CTC1 deletion in mice is not embryonic lethal, 
but results in smaller birth weight, sparse fur covering 
and premature death from bone marrow failure, 
features that are also associated with the genetic 
disorders Coats plus and dyskeratosis congenita (see 
below) (81). Analysis of highly proliferative tissues 
from the CTC1 knockout mice revealed a significant 
decline in replicating cells, suggesting a loss of stem 
cell compartments. While deletion of mammalian 
STN1 or TEN1 has not been reported, knockdown 
of these subunits can lead to growth defects, cellular 
senescence and hypersenitivity to replication inhibitors 
(10, 11, 83-86). 

In contrast to the effects of CST depletion, 
overexpression of CST in human cells increases cell 
survival following replication stress (11). Interestingly, 
the increased survival does not stem from changes 
in telomere length but excessive replicaiton origin 
firing after the removal of hydroxyurea (HU). A recent 
study by Wang et al. also showed that CTC1 or 
TEN1 overexpression can also promote senescence 
bypass, a proposed mechaism of carcinogenesis 
(87). Senescence bypass is typically accomplished 
through direct or indirect inactivation of p53, p16INK4A 
or RB1, leading to the evasion of cellular senescence 
(88, 89). While the biological relevance of these 
CST overexpression studies are unclear due to the 
non-physiological levels of protein, they do suggest 
that increased CST may bypass normal cellular 
checkpoints to promote cell survival. 

Overall, these findings indicate that abberant 
CST expression significantly influences cell growth. 
However, the contributions of telomeric-related defects 
compared to other forms of genome instability on cell 
growth remain unclear. For example, a study by Feng 
et al. showed that rescue of telomeric DNA damage 
signaling did not rescue cell growth in CTC1 deleted 
cells (82). Additionally, premature senescence was 
observed in cells from Coats plus patients with normal 

telomere length, suggesting that growth arrest still 
occurs in the absence of telomere shortening (90).

5. ROLES IN TELOMERE REPLICATION

5.1. Telomerase inhibition and C-strand fill-in

CST plays conserved roles in both the 
inhibition of telomerase following telomere extension 
and facilitating C-strand fill-in (Figure 3A) (39, 40, 44, 
45, 91, 92). Much of our understanding of how CST 
functions in this capacity comes from studies in budding 
yeast. Here, the process is elegantly coordinated by 
post-translational modification of Cdc13 (52, 77, 93, 
94). Following telomere duplex replication, Cdc13 is 
phosphorylated by Cdk1 and the Mec1/Tel1 complex, 
leading to the dissociation of Stn1-Ten1 and the 
recruitment of telomerase for telomere extension (95, 
96). Sequential dephosphorylation and phosphorylation 
of Cdc13 by PP2A and Aurora, respectively, then leads 
to the dissociation of telomerase, the recruitment 
of Stn1-Ten1 and C-strand fill-in synthesis (97, 98). 
Whereas, modification of Cdc13 modulates the 
switch between telomere extension and C-strand fill-
in in budding yeast, in fission yeast and mammals 
the shelterin component TPP1 (Tpz1 in S. pombe) 
functions in this capacity (Figure 3A). In this case, it is 
proposed that TPP1 recruits telomerase for telomere 
extension followed by the recruitment of CST in 
mammals or Stn1-Ten1 in S. pombe for telomerase 
inhibition and C-strand fill-in synthesis by pol alpha 
(45, 82, 92, 99-106). In both fission yeast and 
humans, this switch appears to be regulated by post-
translational modification of TPP1 (107-110). However, 
how the switch occurs and whether CST is also post-
translationally modified requires further investigation. 
Interestingly, CST depletion does not always lead to 
telomere elongation in human cells, suggesting that 
additional mechanisms may also regulate telomerase 
inhibition (85, 91). 

5.2. Telomeric duplex replication

As mentioned previously, telomeres are 
composed of highly repetitive sequences and form 
DNA secondary structures (G4s, t-loops), which can 
stall telomere replication (111, 112). Such stalling can 
lead to unreplicated DNA or DNA breaks. Previous 
studies showed that disruption of CST subunits leads 
to a delay in telomere duplex replication and the 
formation of multiple telomeric signals (MTS), or fragile 
telomeres (10, 81, 84-86, 91). MTS manifest as gaps 
or breaks in telomere fluorescence in situ hybridization 
(FISH) signals on metaphase chromosomes and are 
similar to common fragile sites. These signals were 
first observed with deletion of TRF1 in mice (112, 113). 
MTS are proposed to arise from replication stalling and 
were also observed with the depletion of other DNA 
replication proteins, including FEN1, BLM and RTEL 
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(112, 114, 115). Consistent with this idea, MTS in STN1 
depleted cells do not increase following treatment with 
the replicative DNA polymerase inhibitor, aphidicolin 
(91). Furthermore, mutation of the STN1 OB-fold, 
which affects G-rich binding, cannot rescue MTS 
formation in STN1 depleted cells, suggesting this 
binding mode is required for telomere duplex replication 
(7). Furthermore, this function may be conserved in 
other species, as studies in Arabipodsis and fission 
yeast also indicate a role for CST in telomere duplex 
replication (9, 116).

6. EMERGING ROLES IN GENOME-WIDE 
REPLICATION RESCUE FOLLOWING FORK 
STALLING

From its initial discovery, several pieces of 
evidence suggested that mammalian CST also has non-
telomeric roles. The first, and perhaps most striking, is 

that CTC1 and STN1 were originally discovered as pol 
alpha accessory factors (59, 70, 71). Second, only a 
fraction of STN1 foci (~20%) co-localize with telomeres 
(39). Third, depletion of CST subunits leads to signs 
of general genome instability, such as non-telomeric 
γ-H2AX foci, anaphase bridges and micronuclei 
(40). As outlined below, recent studies have also 
uncovered roles for CST in DNA replication rescue, 
preventing chromosome fragility and other signs of 
general genome instability. Additionally, analysis of 
STN1 in Arabidopsis suggests that CST promotes 
genome-wide DNA replication in plants (9). At present, 
S. cerevisiae CST has not been shown to function 
outside the telomere, however, overexpression of Stn1 
leads to non-telomeric localization and genome-wide 
replication defects (117).

The discovery that AAF (CTC1-STN1) co-
purified with pol alpha suggested that CST might be 

Figure 3. Proposed functions of CST during telomere replication. (A) Telomerase is recruited by TPP1 for telomere extension. After G-overhang extension, 
CST is recruited to the telomere by TPP1. This leads to telomerase inhibition followed by polymerase alpha-mediated C-strand fill-in synthesis. (B) CST 
promotes telomere duplex replication by preventing or removing G-quadruplexes (G4s) and/or the recruitment of pol alpha for replication restart. 
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a constitutive component of the replisome. Indeed, 
Casteel et al. reported that CTC1 (AAF132) and 
STN1 (AAF44) co-localize with PCNA, a marker 
of active replication, and that STN1 knockdown 
results in decreased replication rates (59). However, 
another study by Miyake et al. was unable to detect 
co-localization of STN1 with replication foci and CST 
components have not been identified in unbiased 
screens for replication factors (4, 39, 118). Moreover, 
knockdown of STN1 does not significantly affect bulk 
DNA replication (10). Thus, current opinion is that CST 
is not a constitutive component of the replisome but 
instead acts as a specialized replication factors at 
repetitive GC-rich regions, such as telomeres.

6.1. Replication of repetitive DNA elements

To better understand the contribution of 
CST at non-telomere sites, Chastain et al. performed 
chromatin-immunoprecipitation with sequencing 
(ChIP-seq) using epitope-tagged human STN1 
(8). This analysis was performed on S-phase cells 
treated with HU, which induces replication stalling. 
Under these conditions, STN1 levels were enriched 
at repetitive elements across the genome, including 
long interspersed nuclear elements (LINEs), short 
interspersed nuclear elements (SINEs) and short 

tandem repeats. Surprisingly, over 70% of STN1 
binding sites were localized within CpG islands, which 
are important for transcriptional regulation as well 
as sites of replication initiation (12, 13, 119, 120). 
Interestingly, only a small portion of STN1 localized to 
common chromosomal fragile sites. Yet, chromosome 
fragility was observed at several sites following STN1 
knockdown. Interestingly, CST and RAD51 were 
shown to physically interact and co-localize following 
HU-induced fork stalling. RAD51 is the eukaryotic 
homologue of Escherichia coli RecA and plays an 
integral role in homologous recombination, stabilizing 
stalled replication forks and facilitating replication 
restart (121, 122). STN1 depletion also impaired 
RAD51 recruitment to telomeres and other GC-rich 
sites (8). These findings suggest that CST may recruit 
RAD51 to GC-rich regions to initiate recombination-
based replication restart (Figure 4A). CST may also 
act to remove G4s at GC-rich sequences for replication 
restart or dormant origin activation (see below).

6.2. Dormant origin activation

Replication stalling can also lead to a 
particularly deleterious situation known as a double 
fork stall (DFS). This occurs when converging 
replisomes stall leaving an unreplicated region of 

Figure 4. Model for CST function in replication restart at non-telomeric DNA. CST is proposed to function in two different aspects of replication rescue. 
(A) Synthesis through GC-rich repetitive sequences can lead to the formation G-quadruplexes (G4s) and replication stalling. CST is localized to these 
GC-rich regions to either prevent or remove G4s. If stalling does occur, then CST recruits other factors, such as RAD51, for recombination or fork reversal 
followed by replication restart. (B) CST promotes the firing of nearby dormant origins following stalling. This likely occurs by recruiting specific factors, 
such as pol alpha, for replisome assembly or replication initiation.
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DNA. If left unresolved, DFSs can lead to DNA 
breaks during mitosis. However, these events are 
quite common in human genome, with one to three 
DFSs predicted to occur each cell cycle (18, 19). The 
activation of dormant replication origins is a common 
pathway to rescue DFSs (123, 124). Dormant origins 
are defined as origins that have been licensed by 
loading of MCM2-7 but remain inactive in a typical 
S-phase. However, DFSs or other forms of replication 
stress can trigger their activation to facilitate 
replication rescue. On average, two to three dormant 
origins exist for every active origin in a typical S-phase 
(18). If the number of licensed origins is decreased 
by partial knockdown of MCM2-7 subunits, DFSs 
significantly increase leading to DNA damage (19). 
However, the process of dormant origin activation is 
poorly understood. It is unclear whether these origins 
are stochastically activated, as replication initiation 
factors become available, or require specific factors. 
Surprisingly, depletion of STN1 or overexpression 
of CST following HU-induced replication stalling 
decreases or increases new origin firing, respectively 
(10, 11). These results suggest that CST expression 
levels correlate with origin firing in response to 
replication stress, arguing that CST is important for 
activating dormant origins (Figure 4B). How CST 
promotes dormant origin activation is still unclear but 
it likely involves the recruitment of other factors, such 
as pol alpha, or the resolution of G4s. 

6.3. Consequences of unreplicated DNA in mitosis

Following successful DNA replication, 
chromsomes must be faithfully segragated into 
divinding cells in order to maintain genome stability. 
However, unresolved replicaiton intermediates, 
fusions or concatenation can lead to entanglement of 
chromsomes before their separation in mitosis (125, 
126). This can result in anaphase bridges, which are 
DAPI-stained bridges that span across separating 
sister chromatids. These bridges are associated with 
replication stalling at difficult to replicate loci and 
often lead to chromosome breakage and micronuclei 
formation (127, 128). Depletion or disruption of CST 
subunits leads to anaphase bridges in human, mouse 
and plant cells (10, 40, 41, 85). STN1 and CTC1 
knockdown in human cells also leads to increased 
micronuclei formation (10, 40). The cause of these 
anaphase bridges are still unclear but, in Arabidopsis 
and mice, disruption of CST subunits cause a significant 
increase in telomeric fusions, which could result in 
anaphase bridges. However, in human cells, several 
pieces of data suggest that the anaphase bridges are 
non-telomeric. First, while depletion of CST subunits 
or CTC1 deletion results in the loss of telomeric signal, 
chromsome fusions are very uncommon (10, 40, 85). 
Second, non-telomeric DNA damage foci are present 
in CTC1 and STN1 depleted cells (40, 84, 86). Finally, 
anaphase bridges in TEN1 depleted cells were not 

enriched with telomeric DNA (85). These findings 
suggest that these anaphase bridges arise from 
unresolved replicaton intermediates at other genomic 
loci. This would be in line with a role for CST in 
genome-wide replication rescue, as described above. 
However, further research is required to directly link 
the formation of anaphase bridges with replication 
defects at specific loci in CST depleted cells.

7. CST AND DISEASE

During the ensuing years since the discovery 
of CST, mutations in CTC1 and STN1 have been 
associated with two genetic disorders (Coats plus 
and dyskeratosis congenita), increased risk of cancer, 
heart disease and pulmonary fibrosis. Surprisingly, 
TEN1 mutations have not yet been associated with 
human disease, which may be due to its small size 
or essential nature. In this section, we will describe 
the association between CST dysfunction and human 
disease.

7.1. Coats plus and dyskeratosis congenita 

Coats plus (CP), also known as cerebroretinal 
microagiopathy with calcifications and cysts (CRMCC), 
is a pleiotropic, autosomal recessive disorder that 
is typically diagnosed in infancy or early childhood 
and carries high mortality and morbidity rates (129, 
130). Loss of stem cell compartments appears to 
underlie the disease. CP has common features 
including intrauterine growth retardation, intracranial 
calcifications, retinopathy, neurological defects and 
gastrointestinal bleeding. Penetrance and expression 
of symptoms is wide-ranging and the cause of death 
varies greatly between patients, underscoring the 
complexity of CP. Until recently, the genetic alterations 
leading to CP were unknown. However, in 2012, CTC1 
mutations were identified in a number of CP patients 
with additional cases later reported (131-135). Biallelic 
mutations in either STN1 or the shelterin component 
POT1 have also been shown to cause CP (90, 136). 
Interestingly, characterization of cells from the CP 
patient harboring POT1 mutations were shown to 
affect CST recruitment and positioning at the telomere, 
suggesting that CST misregulation also underlies CP 
in this patient (136). 

CTC1 mutations were also found in patients 
with dyskeratosis congentia (DKC) (137, 138). DKC 
is in a class of short telomere spectrum disorders, 
often referred to as telomeropathies. These disorders 
encompass a variety of diseases ranging from 
childhood bone marrow failure disorders to adult-onset 
pulmonary fibrosis and liver disease (139-142). Like 
CP, the loss of stem cell compartments is thought to 
cause telomeropathies. CP shares common features 
with DKC and other childhood telomeropathies, 
including bone marrow failure, sparse and graying 
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hair, nail dystrophy and osteopenia. Furthermore, 
in a case report by Keller et al. a patient diagnosed 
with DKC showed intracranial calcifications and early 
signs of retinopathy, indicating overlap with CP (137). 
The fact that mutations in CST subunits cause both 
DKC and CP suggest a common molecular etiology. 
Several groups have proposed telomere shortening 
as the common denominator (72, 131, 143). However, 
there have been conflicting reports on whether all CP 
and DKC patients with mutations in CTC1 or STN1 
have shortened telomeres. In a study by Anderson et 
al., they reported telomere lengths at or below the first 
percentile, using flow-FISH, for multiple CP patients 
(131). In contrast, studies by Walne et al. and Polvi et 
al. showed no significant changes in telomere length, 
using the more controversial quantitative PCR-based 
method (132, 135). Finally, Southern blot analysis of 
two CP patients with STN1 mutations demonstrated 
one patient with decreased telomere length and the 
other with no significant length changes compared to 
control samples (90). At present, it is unclear whether 
these differences arise from the methods used to 
measure telomere length and/or variations in disease 
pathology from specific mutations.

Several studies have sought to determine 
the molecular consequences of CP mutations. CTC1 
mutations occur as compound heterozygotes with one 
allele typically harboring a frameshift or nonsense 
mutation and the other allele a missense mutation. 
Expression of the equivalent nonsense and frameshift 
mutants in mice produced truncated proteins that 
either express poorly or not at all, suggesting that 
these alleles are non-functional (143). Indeed, these 
mutants are unable to bind telomeric DNA, localize 
to telomeres or interact with STN1. Analysis of CTC1 
missense mutants showed hypomorphic phenotypes 
in CST, with some affecting DNA binding activity and 
telomeric association, while others led to changes in 
nuclear localization or decreased interaction with pol 
alpha (72). Yet, no common telomeric phenotype was 
observed across the mutants, opening the possibility 
that these mutations also affect the non-telomeric 
roles of CST. In agreement with this idea, cells from 
CP patients, with STN1 mutation, had telomere 
dysfunction as well as signs of general genomic 
instability and DNA replication defects (90). Together, 
these results argue that defects in both telomeric and 
non-telomeric functions of CST contribute to CP, which 
may help explain the diversity of symptoms and their 
expression. To date no molecular studies of DKC 
patient-derived cells harboring CTC1 mutations have 
been performed. However, stromal cells collected from 
one patient showed severe premature senescence 
(137), which was also observed in CP patient cells with 
STN1 and POT1 mutations. The authors of this study 
suggest that expression of both DKC and CP features 
may relate to environmental or genetic modifiers. Thus, 
further characterization of CP and DKC patient-derived 

cells will be critical to understand CST and help in the 
treatment and management of these diseases. 

7.2. Cancer

Alteration in the expression of CST 
subunits has been linked to increased cancer risk 
and poor prognosis of survival (87, 144-146). For 
example, decreased CTC1 or STN1 (also known 
as OBFC1) gene expression leads to decreased 
survival in breast, lung and gastric cancer patients 
(147). Single nucleotide polymorphisms (SNPs) 
in CTC1 and STN1 have also been associated 
with an increased risk of cancer development (see 
below). These findings are consistent with the fact 
that depletion of CST subunits leads to hallmarks of 
cancer, including telomere dysfunction and increased 
genome instability (anaphase bridges, micronuclei, 
DNA damage) (8, 10, 40, 85, 86, 92). Furthermore, 
increased CTC1 expression leads to radioresistance 
in melanoma cancer cell lines by preventing telomere 
shortening and apoptosis (145). While further analysis 
is required, these results indicate that CST levels 
are tightly regulated to preserve genome stability 
and suggest that CST may be a promising target for 
cancer therapy. 

7.3. Genome-wide association studies

Over the past seven years, SNPs in 
STN1 and CTC1 have been associated with a 
number of different diseases through genome-
wide association studies (GWAS). The first study to 
discover pathogenic SNPs in STN1 was focused on 
identifying loci associated with shortened leukocyte 
telomere length (LTL), which is linked to short 
telomere disorders, aging, heart disease and cancer 
(148). At the time, subunits of telomerase (TERC, 
TERT, DKC1) were the sole genes associated with 
shortened LTL. In this breakthrough study, Levy, et al. 
analyzed several cohorts, which included more than 
three thousand participants, to identify genetic loci 
associated with decreased LTL. They found SNPs in 
STN1 and its surrounding gene region significantly 
associated decreased LTL. Since that time, GWASs 
have correlated SNPs in STN1 with a variety of 
disease pathologies, including increased cancer risk 
(adult glioma, neuroblastoma, melanoma, epithelial 
ovarian cancer, chronic lymphocytic leukemia, 
thyroid cancer) (149-155), pulmonary fibrosis (156) 
and heart disease (157, 158). It is worth noting that 
many of these studies also identified SNPs in the 
core components of telomerase, TERC and TERT, 
and other proteins involved in telomere length 
regulation. Several studies have also identified 
CTC1 SNPs associated with increased cancer risk 
and shortened LTL (149, 151, 153, 159). No studies 
to date have identified TEN1 SNPs associated with 
disease pathologies. 
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8. SUMMARY AND PERSPECTIVES

CST is a conserved ssDNA binding protein 
that resembles RPA in many ways. Yet, CST has also 
developed specific features that distinguish it from 
RPA and allow it to act as a specialized replication 
factor. The DNA binding activity of human CST make 
it highly suited for its role in DNA replication both 
at the telomere and across the genome. Its ability 
to bind in both a sequence specific and sequence 
independent manner provide flexibility for CST to 
function in a variety of DNA maintenance pathways. 
On the one hand, the G-rich preference enables CST 
to maintain its conserved role in telomerase inhibition 
and C-strand fill-in synthesis. On the other hand, it 
can bind non-telomere regions to resolve genome-
wide replication issues. While further characterization 
is required, CST binding likely involves an initial 
recognition of guanosine residues by OB-folds in 
STN1 and the C-terminus of CTC1 to initiate binding 
on short G-rich sequences (7). 

CST can also bind and resolve G4s (62, 67, 
160). This G4 binding could serve to localize CST to 
specific regions, such as telomeres and CpG islands, 
to promote G4 melting and stable binding (Figure 3 and 
4) (8). Once stably bound, other OB-folds in CTC1 can 
be engaged, leading to high affinity binding. However, 
with longer ssDNA regions, the G-rich preference 
would not be required due to the engagement 
of additional OB-folds that are not dependent on 
guanosine residues. Since S. cerevisiae Cdc13 uses 
a single OB-fold for DNA binding, this may explain 
why its activity is restricted to telomeres. Biochemical 
and structural studies will be important to elucidate the 
different binding modes of CST and their conservation 
across species.

In addition to CST, several other DNA 
replication proteins, including BLM, WRN, RTEL and 
PIF1, promote telomere and genome-wide replication 
and unwind G4s (115, 161-165). Whether these factors 
coordinate with CST for replication rescue will require 
further investigation. However, a key feature of RPA is 
its ability to localize to specific sites and recruit other 
proteins for replication, repair and recombination. We 
presume that CST functions in a similar manner. For 
example, in C-strand fill-in, this likely involves the 
recruitment of pol alpha whereas CST could recruit 
RAD51 or other replication factors for replication 
restart (Figure 4A). The interaction between CST 
and pol alpha may also be important to stimulate the 
DNA damage response. Work by Van et al. found that 
continued primer synthesis by pol alpha promotes 
ATR-CHK1 activation. However, this is unlikely as 
STN1 knockdown does not lead to changes in CHK1 
phosphorylation following HU treatment (10). Whether 
or not CST uses similar mechanisms to activate 
dormant replication origins is still an open question. 
Nevertheless, mutation of the STN1 OB-fold indicates 

that dormant origin activation is separable from the 
role of CST in telomere duplex replication, suggesting 
that the G-rich binding mode of CST in not required 
for dormant origin activation (7). Additional studies are 
now needed to define other CST interacting partners 
and how CST utilizes its specific DNA binding modes 
during various DNA transactions.

The dual role of CST at both telomeric and 
non-telomeric sites is likely reflected in the different 
diseases and patient symptoms that associate with 
CST mutation. For example, while some CP patients 
exhibit telomere shortening, this may not always be 
the case. However, general genome instability is a 
common feature of CST mutation, suggesting that 
chromosome fragility caused by replication defects at 
both telomeric and other GC-rich sites may underlie 
features of the disease. It is possible that certain cell 
types may be particularly affected by such events, 
leading to an abrupt exit from the cell cycle and 
senescence or apoptosis. In contrast, defects in G- 
and C-strand synthesis would affect cell types (e.g. 
hemopoietic, skin, nail, lung) typically associated with 
short telomere disorders. Thus, the non-telomere 
defects are likely reflected in the additional symptoms 
of CP patients compared to DKC. However, further 
mechanistic studies are required to parse out the 
molecular consequences of CST patient mutations on 
its various replication-related activities. Such studies 
will greatly aid in understanding how CST mutation 
leads to disease and provide avenues to treat and 
prevent diseases associated with CST dysfunction.
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